On Vortex Alignment and the Boundedness of the Lq-Norm of Vorticity in Incompressible Viscous Fluids
We show that the spatial L q -norm ( q > 5/3) of the vorticity of an incompressible viscous fluid in ℝ 3 remains bounded uniformly in time, provided that the direction of vorticity is Hölder continuous in space, and that the space-time L q -norm of vorticity is finite. The Hölder index depends on...
Gespeichert in:
Veröffentlicht in: | Acta mathematica scientia 2020-11, Vol.40 (6), p.1700-1708 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We show that the spatial
L
q
-norm (
q
> 5/3) of the vorticity of an incompressible viscous fluid in ℝ
3
remains bounded uniformly in time, provided that the direction of vorticity is Hölder continuous in space, and that the space-time
L
q
-norm of vorticity is finite. The Hölder index depends only on
q
. This serves as a variant of the classical result by Constantin-Fefferman (Direction of vorticity and the problem of global regularity for the Navier-Stokes equations, Indiana Univ. J. Math.
42
(1993), 775–789), and the related work by Grujić-Ruzmaikina (Interpolation between algebraic and geometric conditions for smoothness of the vorticity in the 3D NSE, Indiana Univ. J. Math.
53
(2004), 1073–1080). |
---|---|
ISSN: | 0252-9602 1572-9087 |
DOI: | 10.1007/s10473-020-0606-7 |