On Vortex Alignment and the Boundedness of the Lq-Norm of Vorticity in Incompressible Viscous Fluids

We show that the spatial L q -norm ( q > 5/3) of the vorticity of an incompressible viscous fluid in ℝ 3 remains bounded uniformly in time, provided that the direction of vorticity is Hölder continuous in space, and that the space-time L q -norm of vorticity is finite. The Hölder index depends on...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Acta mathematica scientia 2020-11, Vol.40 (6), p.1700-1708
1. Verfasser: Li, Siran
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We show that the spatial L q -norm ( q > 5/3) of the vorticity of an incompressible viscous fluid in ℝ 3 remains bounded uniformly in time, provided that the direction of vorticity is Hölder continuous in space, and that the space-time L q -norm of vorticity is finite. The Hölder index depends only on q . This serves as a variant of the classical result by Constantin-Fefferman (Direction of vorticity and the problem of global regularity for the Navier-Stokes equations, Indiana Univ. J. Math. 42 (1993), 775–789), and the related work by Grujić-Ruzmaikina (Interpolation between algebraic and geometric conditions for smoothness of the vorticity in the 3D NSE, Indiana Univ. J. Math. 53 (2004), 1073–1080).
ISSN:0252-9602
1572-9087
DOI:10.1007/s10473-020-0606-7