AVERAGE REGULARITY OF THE SOLUTION TO AN EQUATION WITH THE RELATIVISTIC-FREE TRANSPORT OPERATOR

Let u =u(t,x,p) satisfy the transport equation δu/δt + p/p0δu/δx =f,where f =f(t,x,p) belongs to Lp((0,T) x R3 x R3) for 1 < p < ∞ and δu/δt + p/p0δu/δx is the relativisticfree transport operator from the relativistic Boltzmann equation.We show the regularity of fR3 u(t,x,p)dp using the same method...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:数学物理学报(英文版) 2017, Vol.37 (5), p.1281-1294
Hauptverfasser: Jianjun HUANG, Zhenglu JIANG
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Let u =u(t,x,p) satisfy the transport equation δu/δt + p/p0δu/δx =f,where f =f(t,x,p) belongs to Lp((0,T) x R3 x R3) for 1 < p < ∞ and δu/δt + p/p0δu/δx is the relativisticfree transport operator from the relativistic Boltzmann equation.We show the regularity of fR3 u(t,x,p)dp using the same method as given by Golse,Lions,Perthame and Sentis.This average regularity is considered in terms of fractional Sobolev spaces and it is very useful for the study of the existence of the solution to the Cauchy problem on the relativistic Boltzmann equation.
ISSN:0252-9602
DOI:10.3969/j.issn.0252-9602.2017.05.007