AVERAGE REGULARITY OF THE SOLUTION TO AN EQUATION WITH THE RELATIVISTIC-FREE TRANSPORT OPERATOR
Let u =u(t,x,p) satisfy the transport equation δu/δt + p/p0δu/δx =f,where f =f(t,x,p) belongs to Lp((0,T) x R3 x R3) for 1 < p < ∞ and δu/δt + p/p0δu/δx is the relativisticfree transport operator from the relativistic Boltzmann equation.We show the regularity of fR3 u(t,x,p)dp using the same method...
Gespeichert in:
Veröffentlicht in: | 数学物理学报(英文版) 2017, Vol.37 (5), p.1281-1294 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Let u =u(t,x,p) satisfy the transport equation δu/δt + p/p0δu/δx =f,where f =f(t,x,p) belongs to Lp((0,T) x R3 x R3) for 1 < p < ∞ and δu/δt + p/p0δu/δx is the relativisticfree transport operator from the relativistic Boltzmann equation.We show the regularity of fR3 u(t,x,p)dp using the same method as given by Golse,Lions,Perthame and Sentis.This average regularity is considered in terms of fractional Sobolev spaces and it is very useful for the study of the existence of the solution to the Cauchy problem on the relativistic Boltzmann equation. |
---|---|
ISSN: | 0252-9602 |
DOI: | 10.3969/j.issn.0252-9602.2017.05.007 |