ON THE FOURIER-VILENKIN COEFFICIENTS

In this article, we prove the following statement that is true for both unbounded and bounded Vilenkin systems: for any ε∈ (0, 1), there exists a measurable set E C [0, 1) of measure bigger than 1 - s such that for any function f ∈ LI[0, 1), it is possible to find a function g ∈ L^1 [0, 1) coincidin...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Acta mathematica scientia 2017-03, Vol.37 (2), p.293-300
Hauptverfasser: GRIGORYAN, Martin G., SARGSYAN, Stepan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this article, we prove the following statement that is true for both unbounded and bounded Vilenkin systems: for any ε∈ (0, 1), there exists a measurable set E C [0, 1) of measure bigger than 1 - s such that for any function f ∈ LI[0, 1), it is possible to find a function g ∈ L^1 [0, 1) coinciding with f on E and the absolute values of non zero Fourier coefficients of g with respect to the Vilenkin system are monotonically decreasing.
ISSN:0252-9602
1572-9087
DOI:10.1016/S0252-9602(17)30002-4