ON THE FOURIER-VILENKIN COEFFICIENTS
In this article, we prove the following statement that is true for both unbounded and bounded Vilenkin systems: for any ε∈ (0, 1), there exists a measurable set E C [0, 1) of measure bigger than 1 - s such that for any function f ∈ LI[0, 1), it is possible to find a function g ∈ L^1 [0, 1) coincidin...
Gespeichert in:
Veröffentlicht in: | Acta mathematica scientia 2017-03, Vol.37 (2), p.293-300 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this article, we prove the following statement that is true for both unbounded and bounded Vilenkin systems: for any ε∈ (0, 1), there exists a measurable set E C [0, 1) of measure bigger than 1 - s such that for any function f ∈ LI[0, 1), it is possible to find a function g ∈ L^1 [0, 1) coinciding with f on E and the absolute values of non zero Fourier coefficients of g with respect to the Vilenkin system are monotonically decreasing. |
---|---|
ISSN: | 0252-9602 1572-9087 |
DOI: | 10.1016/S0252-9602(17)30002-4 |