EXISTENCE AND NONEXISTENCE OF SOLUTIONS FOR A HARMONIC EQUATION WITH CRITICAL NONLINEARITY
This paper is concerned with the harmonic equation ( P∓ɛ): ‡u = 0, u < 0 in Bn and ∂u∂v+n-22u=n-22Kunn-2∓ɛ on Sn-1 where Bn is the unit ball in ℝn, n ≥ 4 with Euclidean metric g0, ∂Bn=Sn-1 is its boundary, K is a function on Sn-1 and ε is a small positive parameter. We construct solutions of the...
Gespeichert in:
Veröffentlicht in: | Acta mathematica scientia 2016-09, Vol.36 (5), p.1305-1316 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | This paper is concerned with the harmonic equation ( P∓ɛ): ‡u = 0, u < 0 in Bn and ∂u∂v+n-22u=n-22Kunn-2∓ɛ on Sn-1 where Bn is the unit ball in ℝn, n ≥ 4 with Euclidean metric g0, ∂Bn=Sn-1 is its boundary, K is a function on Sn-1 and ε is a small positive parameter. We construct solutions of the subcritical equation (P–ε) which blow up at one critical point of K. We give also a sufficient condition on the function K to ensure the nonexistence of solutions for (P–ε) which blow up at one point. Finally, we prove a nonexistence result of single peaked solutions for the supercritical equation (P+ε) |
---|---|
ISSN: | 0252-9602 1572-9087 |
DOI: | 10.1016/S0252-9602(16)30070-4 |