EXISTENCE AND NONEXISTENCE OF SOLUTIONS FOR A HARMONIC EQUATION WITH CRITICAL NONLINEARITY

This paper is concerned with the harmonic equation ( P∓ɛ): ‡u = 0, u < 0 in Bn and ∂u∂v+n-22u=n-22Kunn-2∓ɛ on Sn-1 where Bn is the unit ball in ℝn, n ≥ 4 with Euclidean metric g0, ∂Bn=Sn-1 is its boundary, K is a function on Sn-1 and ε is a small positive parameter. We construct solutions of the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Acta mathematica scientia 2016-09, Vol.36 (5), p.1305-1316
1. Verfasser: OULD BOUH, Kamal
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This paper is concerned with the harmonic equation ( P∓ɛ): ‡u = 0, u < 0 in Bn and ∂u∂v+n-22u=n-22Kunn-2∓ɛ on Sn-1 where Bn is the unit ball in ℝn, n ≥ 4 with Euclidean metric g0, ∂Bn=Sn-1 is its boundary, K is a function on Sn-1 and ε is a small positive parameter. We construct solutions of the subcritical equation (P–ε) which blow up at one critical point of K. We give also a sufficient condition on the function K to ensure the nonexistence of solutions for (P–ε) which blow up at one point. Finally, we prove a nonexistence result of single peaked solutions for the supercritical equation (P+ε)
ISSN:0252-9602
1572-9087
DOI:10.1016/S0252-9602(16)30070-4