MATRIX PRODUCT CODES WITH ROSENBLOOM-TSFASMAN METRIC

In this article, the Rosenbloom-Tsfasman metric of matrix product codes over finite commutative rings is studied and the lower bounds for the minimal Rosenbloom- Tsfasman distances of the matrix product codes axe obtained. The lower bounds of the dual codes of matrix product codes over finite commut...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Acta mathematica scientia 2013-05, Vol.33 (3), p.687-700
1. Verfasser: 陈博聪 林丽仁 刘宏伟
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this article, the Rosenbloom-Tsfasman metric of matrix product codes over finite commutative rings is studied and the lower bounds for the minimal Rosenbloom- Tsfasman distances of the matrix product codes axe obtained. The lower bounds of the dual codes of matrix product codes over finite commutative Frobenius rings are also given.
ISSN:0252-9602
1572-9087
DOI:10.1016/S0252-9602(13)60030-2