THE SURFACE AREA PRESERVING MEAN CURVATURE FLOW IN QUASI-FUCHSIAN MANIFOLDS

In this paper, we consider the surface area preserving mean curvature flow in quasi-Fuchsian 3-manifolds. We show that the flow exists for all times and converges exponentially to a smooth surface of constant mean curvature with the same surface area as the initial surface.

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Acta mathematica scientia 2012-11, Vol.32 (6), p.2191-2202
1. Verfasser: 田大平 李光汉 吴传喜
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper, we consider the surface area preserving mean curvature flow in quasi-Fuchsian 3-manifolds. We show that the flow exists for all times and converges exponentially to a smooth surface of constant mean curvature with the same surface area as the initial surface.
ISSN:0252-9602
1572-9087
DOI:10.1016/S0252-9602(12)60169-6