ON THE LOWER BOUND FOR A CLASS OF HARMONIC FUNCTIONS IN THE HALF SPACE

The main objective is to derive a lower bound from an upper one for harmonic functions in the half space, which extends a result of B. Y. Levin from dimension 2 to dimension n 〉 2. To this end, we first generalize the Carleman's formula for harmonic functions in the half plane to higher dimensional...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Acta mathematica scientia 2012-07, Vol.32 (4), p.1487-1494
1. Verfasser: 张艳慧 邓冠铁 高洁欣
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The main objective is to derive a lower bound from an upper one for harmonic functions in the half space, which extends a result of B. Y. Levin from dimension 2 to dimension n 〉 2. To this end, we first generalize the Carleman's formula for harmonic functions in the half plane to higher dimensional half space, and then establish a Nevanlinna's representation for harmonic functions in the half sphere by using HSrmander's theorem.
ISSN:0252-9602
1572-9087
DOI:10.1016/S0252-9602(12)60117-9