A MULTIDIMENSIONAL CENTRAL LIMIT THEOREM WITH SPEED OF CONVERGENCE FOR AXIOM A DIFFEOMORPHISMS
Let T:X → X be an Axiom A diffeomorphism,m the Gibbs state for a Hlder continuous function ɡ. Assume that f:X → R~d is a Hlder continuous function with ∫_X~(fdm) = 0.If the components of f are cohomologously independent, then there exists a positive definite symmetric matrix σ~2:=σ~2 (f ) such tha...
Gespeichert in:
Veröffentlicht in: | Acta mathematica scientia 2011-05, Vol.31 (3), p.1123-1132 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Let T:X → X be an Axiom A diffeomorphism,m the Gibbs state for a Hlder continuous function ɡ. Assume that f:X → R~d is a Hlder continuous function with ∫_X~(fdm) = 0.If the components of f are cohomologously independent, then there exists a positive definite symmetric matrix σ~2:=σ~2 (f ) such that S~fn √ n converges in distribution with respect to m to a Gaussian random variable with expectation 0 and covariance matrix σ~2 . Moreover, there exists a real number A 〉 0 such that, for any integer n ≥ 1,Π( m*( 1√ nS f n ),N (0,σ~2 ) ≤A√n, where m*(1√ n S~fn)denotes the distribution of 1√ n S~fn with respect to m, and Π is the Prokhorov metric. |
---|---|
ISSN: | 0252-9602 1572-9087 |
DOI: | 10.1016/S0252-9602(11)60303-2 |