A MULTIDIMENSIONAL CENTRAL LIMIT THEOREM WITH SPEED OF CONVERGENCE FOR AXIOM A DIFFEOMORPHISMS

Let T:X → X be an Axiom A diffeomorphism,m the Gibbs state for a Hlder continuous function ɡ. Assume that f:X → R~d is a Hlder continuous function with ∫_X~(fdm) = 0.If the components of f are cohomologously independent, then there exists a positive definite symmetric matrix σ~2:=σ~2 (f ) such tha...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Acta mathematica scientia 2011-05, Vol.31 (3), p.1123-1132
Hauptverfasser: Xia, Hongqiang, Tan, Dayao
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Let T:X → X be an Axiom A diffeomorphism,m the Gibbs state for a Hlder continuous function ɡ. Assume that f:X → R~d is a Hlder continuous function with ∫_X~(fdm) = 0.If the components of f are cohomologously independent, then there exists a positive definite symmetric matrix σ~2:=σ~2 (f ) such that S~fn √ n converges in distribution with respect to m to a Gaussian random variable with expectation 0 and covariance matrix σ~2 . Moreover, there exists a real number A 〉 0 such that, for any integer n ≥ 1,Π( m*( 1√ nS f n ),N (0,σ~2 ) ≤A√n, where m*(1√ n S~fn)denotes the distribution of 1√ n S~fn with respect to m, and Π is the Prokhorov metric.
ISSN:0252-9602
1572-9087
DOI:10.1016/S0252-9602(11)60303-2