ON THE GLOBAL STABILITY CONJECTURE OF THE GENOTYPE SELECTION MODEL
In 1994, Grove, Kocic, Ladas, and Levin conjectured that the local stability and global stability conditions of the fixed point -y= 1/2 in the genotype selection model should be equivalent. In this article, we give an affirmative answer to this conjecture and prove that local stability implies globa...
Gespeichert in:
Veröffentlicht in: | Acta mathematica scientia 2011-03, Vol.31 (2), p.512-528 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In 1994, Grove, Kocic, Ladas, and Levin conjectured that the local stability and global stability conditions of the fixed point -y= 1/2 in the genotype selection model should be equivalent. In this article, we give an affirmative answer to this conjecture and prove that local stability implies global stability. Some illustrative examples are included to demonstrate the validity and applicability of the results. |
---|---|
ISSN: | 0252-9602 1572-9087 |
DOI: | 10.1016/S0252-9602(11)60252-X |