ON THE GLOBAL STABILITY CONJECTURE OF THE GENOTYPE SELECTION MODEL

In 1994, Grove, Kocic, Ladas, and Levin conjectured that the local stability and global stability conditions of the fixed point -y= 1/2 in the genotype selection model should be equivalent. In this article, we give an affirmative answer to this conjecture and prove that local stability implies globa...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Acta mathematica scientia 2011-03, Vol.31 (2), p.512-528
1. Verfasser: Saker, S.H.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In 1994, Grove, Kocic, Ladas, and Levin conjectured that the local stability and global stability conditions of the fixed point -y= 1/2 in the genotype selection model should be equivalent. In this article, we give an affirmative answer to this conjecture and prove that local stability implies global stability. Some illustrative examples are included to demonstrate the validity and applicability of the results.
ISSN:0252-9602
1572-9087
DOI:10.1016/S0252-9602(11)60252-X