PARAMETER ESTIMATION FOR A CLASS OF STOCHASTIC DIFFERENTIAL EQUATIONS DRIVEN BY SMALL STABLE NOISES FROM DISCRETE OBSERVATIONS

We study the least squares estimation of drift parameters for a class of stochastic differential equations driven by small a-stable noises, observed at n regularly spaced time points ti = i/n, i = 1,...,n on [0, 1]. Under some regularity conditions, we obtain the consistency and the rate of converge...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Acta mathematica scientia 2010-05, Vol.30 (3), p.645-663
1. Verfasser: 龙红卫
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We study the least squares estimation of drift parameters for a class of stochastic differential equations driven by small a-stable noises, observed at n regularly spaced time points ti = i/n, i = 1,...,n on [0, 1]. Under some regularity conditions, we obtain the consistency and the rate of convergence of the least squares estimator (LSE) when a small dispersion parameter ε→0 and n →∞ simultaneously. The asymptotic distribution of the LSE in our setting is shown to be stable, which is completely different from the classical cases where asymptotic distributions are normal.
ISSN:0252-9602
1572-9087
DOI:10.1016/S0252-9602(10)60067-7