PARAMETER ESTIMATION FOR A CLASS OF STOCHASTIC DIFFERENTIAL EQUATIONS DRIVEN BY SMALL STABLE NOISES FROM DISCRETE OBSERVATIONS
We study the least squares estimation of drift parameters for a class of stochastic differential equations driven by small a-stable noises, observed at n regularly spaced time points ti = i/n, i = 1,...,n on [0, 1]. Under some regularity conditions, we obtain the consistency and the rate of converge...
Gespeichert in:
Veröffentlicht in: | Acta mathematica scientia 2010-05, Vol.30 (3), p.645-663 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We study the least squares estimation of drift parameters for a class of stochastic differential equations driven by small a-stable noises, observed at n regularly spaced time points ti = i/n, i = 1,...,n on [0, 1]. Under some regularity conditions, we obtain the consistency and the rate of convergence of the least squares estimator (LSE) when a small dispersion parameter ε→0 and n →∞ simultaneously. The asymptotic distribution of the LSE in our setting is shown to be stable, which is completely different from the classical cases where asymptotic distributions are normal. |
---|---|
ISSN: | 0252-9602 1572-9087 |
DOI: | 10.1016/S0252-9602(10)60067-7 |