MULTISCALE ISSUES IN DNS OF MULTIPHASE FLOWS
Direct numerical simulations (DNS) have now become a well established tool to examine complex multiphase flows. Such flows typically exhibit a large range of scales and it is generally necessary to use different descriptions of the flow depending on the scale that we are examining. Here we discuss m...
Gespeichert in:
Veröffentlicht in: | Acta mathematica scientia 2010-03, Vol.30 (2), p.551-562 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Direct numerical simulations (DNS) have now become a well established tool to examine complex multiphase flows. Such flows typically exhibit a large range of scales and it is generally necessary to use different descriptions of the flow depending on the scale that we are examining. Here we discuss multiphase flows from a multiscale perspective. Those include both how DNS are providing insight and understanding for modeling of scales much larger than the "dominant scale" (defined where surface tension, viscous forces or inertia are important), as well as how DNS are often limited by the need to resolve processes taking place on much smaller scales. Both problems can be cast into a language introduced for general classes of multiscale problems and reveal that while the classification may be new, the issues are not. |
---|---|
ISSN: | 0252-9602 1572-9087 |
DOI: | 10.1016/S0252-9602(10)60062-8 |