A RECOGNITION OF SIMPLE GROUPS PSL(3, q) BY THEIR ELEMENT ORDERS
For any group G, denote by πe(G) the set of orders of elements in G. Given a finite group G, let h(πe(G)) be the number of isomorphism classes of finite groups with the same set πe(G) of element orders. A group G is called k-recognizable if h(πe(G))= k < ∞, otherwise G is called non-recognizable....
Gespeichert in:
Veröffentlicht in: | Acta mathematica scientia 2004-01, Vol.24 (1), p.45-51 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | For any group G, denote by πe(G) the set of orders of elements in G. Given a finite group G, let h(πe(G)) be the number of isomorphism classes of finite groups with the same set πe(G) of element orders. A group G is called k-recognizable if h(πe(G))= k < ∞, otherwise G is called non-recognizable. Also a 1-recognizable group is called a recognizable (or characterizable) group. In this paper the authors show that the simple groups PSL(3, q), where 3 < q ≡ ±2 (mod 5) and (6, (q – 1)/2) = 1, are recognizable. |
---|---|
ISSN: | 0252-9602 1572-9087 |
DOI: | 10.1016/S0252-9602(17)30358-2 |