WEIGHTED KOPPELMAN-LERAY-NORGUET FORMULAS ON A LOCAL q-CONCAVE WEDGE IN A COMPLEX MANIFOLD

A weighted Koppelman-Leray-Norguet formula of (r, s) differential forms on a local q-concave wedge in a complex manifold is obtained. By constructing the new weighted kernels, the authors give a new weighted Koppelman-Leray-Norguet formula with-out boundary integral of (r, s) differential forms, whi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Acta mathematica scientia 2003-10, Vol.23 (4), p.531-543
1. Verfasser: 邱春晖 姚宗元
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A weighted Koppelman-Leray-Norguet formula of (r, s) differential forms on a local q-concave wedge in a complex manifold is obtained. By constructing the new weighted kernels, the authors give a new weighted Koppelman-Leray-Norguet formula with-out boundary integral of (r, s) differential forms, which is different from the classical one. The new weighted formula is especially suitable for the case of the local q-concave wedge with a non-smooth boundary, so one can avoid complex estimates of boundary integrals and the density of integral may be not defined on the boundary but only in the domain. Moreover, the weighted integral formulas have much freedom in applications such as in the intervolation of functions.
ISSN:0252-9602
1572-9087
DOI:10.1016/S0252-9602(17)30497-6