Homogenization with the Quasistatic Tresca Friction Law: Qualitative and Quantitative Results

Modeling of frictional contacts is crucial for investigating mechanical perforances of composite materials under varying service environments. The paper considers a linear elasticity system with strongly heterogeneous coefficients and quasistatic Tresca friction law, and studies the homogenization t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Chinese annals of mathematics. Serie B 2023-09, Vol.44 (5), p.781-802
Hauptverfasser: Ye, Changqing, Chung, Eric T., Cui, Jun-zhi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Modeling of frictional contacts is crucial for investigating mechanical perforances of composite materials under varying service environments. The paper considers a linear elasticity system with strongly heterogeneous coefficients and quasistatic Tresca friction law, and studies the homogenization theories under the frameworks of H-convergence and small ε -periodicity. The qualitative result is based on H-convergence, which shows the original oscillating solutions will converge weakly to the homogenized solution, while the author’s quantitative result provides an estimate of asymptotic errors in H 1 -norm for the periodic homogenization. This paper also designs several numerical experiments to validate the convergence rates in the quantitative analysis.
ISSN:0252-9599
1860-6261
DOI:10.1007/s11401-023-0044-7