Composition Cesàro Operator on the Normal Weight Zygmund Space in High Dimensions

Let n > 1 and B be the unit ball in n dimensions complex space C n . Suppose that φ is a holomorphic self-map of B and ψ ∈ H ( B ) with ψ (0) = 0. A kind of integral operator, composition Cesàro operator, is defined by T φ ψ ( f ) ( z ) = ∫ 0 1 f [ φ ( t z ) ] R ψ ( t z ) d t t f ∈ H ( B ) z ∈ B...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Chinese annals of mathematics. Serie B 2021, Vol.42 (1), p.69-84
Hauptverfasser: Xu, Si, Zhang, Xuejun, Li, Shenlian
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Let n > 1 and B be the unit ball in n dimensions complex space C n . Suppose that φ is a holomorphic self-map of B and ψ ∈ H ( B ) with ψ (0) = 0. A kind of integral operator, composition Cesàro operator, is defined by T φ ψ ( f ) ( z ) = ∫ 0 1 f [ φ ( t z ) ] R ψ ( t z ) d t t f ∈ H ( B ) z ∈ B . In this paper, the authors characterize the conditions that the composition Cesàro operator T φ,ψ is bounded or compact on the normal weight Zygmund space Z μ ( B ) . At the same time, the sufficient and necessary conditions for all cases are given.
ISSN:0252-9599
1860-6261
DOI:10.1007/s11401-021-0245-x