Pseudo Asymptotically Periodic Solutions for Volterra Difference Equations of Convolution Type

In this paper, the author studies the existence and uniqueness of discrete pseudo asymptotically periodic solutions for nonlinear Volterra difference equations of convolution type, where the nonlinear perturbation is considered as Lipschitz condition or non-Lipschitz case, respectively. The results...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Chinese annals of mathematics. Serie B 2019-07, Vol.40 (4), p.501-514
1. Verfasser: Xia, Zhinan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 514
container_issue 4
container_start_page 501
container_title Chinese annals of mathematics. Serie B
container_volume 40
creator Xia, Zhinan
description In this paper, the author studies the existence and uniqueness of discrete pseudo asymptotically periodic solutions for nonlinear Volterra difference equations of convolution type, where the nonlinear perturbation is considered as Lipschitz condition or non-Lipschitz case, respectively. The results are a consequence of application of different fixed point theorems, namely, the contraction mapping principle, the Leray-Schauder alternative theorem and Matkowski’s fixed point technique.
doi_str_mv 10.1007/s11401-019-0148-2
format Article
fullrecord <record><control><sourceid>wanfang_jour_proqu</sourceid><recordid>TN_cdi_wanfang_journals_sxnk_e201904003</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><wanfj_id>sxnk_e201904003</wanfj_id><sourcerecordid>sxnk_e201904003</sourcerecordid><originalsourceid>FETCH-LOGICAL-c348t-e5a8a93a362c3c3526ac4220074c9575b749170bd135be6f819d59fc329a6fdd3</originalsourceid><addsrcrecordid>eNp1kE1LwzAYgIMoOKc_wFvAg6dqPtvmOOb8gIEDp0dDliajs2u6pFX7783oYCcP4b08z_uSB4BrjO4wQtl9wJghnCAs4mN5Qk7ACOcpSlKS4lMwQoSTRHAhzsFFCBsUoYyjEfhcBNMVDk5Cv21a15ZaVVUPF8aXrig1fHNV15auDtA6Dz9c1RrvFXworTXe1NrA2a5TA-EsnLr6-2DAZd-YS3BmVRXM1WGOwfvjbDl9TuavTy_TyTzRlOVtYrjKlaCKpkRTTTlJlWaExI8xLXjGVxkTOEOrAlO-MqnNsSi4sJoSoVJbFHQMboe9P6q2ql7Ljet8HS_K8Ft_SUNiGMQQopG8GcjGu11nQntECYkJRc5SEik8UNq7ELyxsvHlVvleYiT3weUQXEZB7oPLvUMGJ0S2Xht_3Py_9AfR-IMf</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2240198462</pqid></control><display><type>article</type><title>Pseudo Asymptotically Periodic Solutions for Volterra Difference Equations of Convolution Type</title><source>Alma/SFX Local Collection</source><source>SpringerLink Journals - AutoHoldings</source><creator>Xia, Zhinan</creator><creatorcontrib>Xia, Zhinan</creatorcontrib><description>In this paper, the author studies the existence and uniqueness of discrete pseudo asymptotically periodic solutions for nonlinear Volterra difference equations of convolution type, where the nonlinear perturbation is considered as Lipschitz condition or non-Lipschitz case, respectively. The results are a consequence of application of different fixed point theorems, namely, the contraction mapping principle, the Leray-Schauder alternative theorem and Matkowski’s fixed point technique.</description><identifier>ISSN: 0252-9599</identifier><identifier>EISSN: 1860-6261</identifier><identifier>DOI: 10.1007/s11401-019-0148-2</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Applications of Mathematics ; Asymptotic properties ; Convolution ; Difference equations ; Fixed points (mathematics) ; Lipschitz condition ; Mapping ; Mathematical analysis ; Mathematics ; Mathematics and Statistics ; Nonlinear equations ; Perturbation ; Theorems</subject><ispartof>Chinese annals of mathematics. Serie B, 2019-07, Vol.40 (4), p.501-514</ispartof><rights>The Editorial Office of CAM and Springer-Verlag Berlin Heidelberg 2019</rights><rights>Copyright Springer Nature B.V. 2019</rights><rights>Copyright © Wanfang Data Co. Ltd. All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c348t-e5a8a93a362c3c3526ac4220074c9575b749170bd135be6f819d59fc329a6fdd3</citedby><cites>FETCH-LOGICAL-c348t-e5a8a93a362c3c3526ac4220074c9575b749170bd135be6f819d59fc329a6fdd3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://www.wanfangdata.com.cn/images/PeriodicalImages/sxnk-e/sxnk-e.jpg</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11401-019-0148-2$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11401-019-0148-2$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>315,781,785,27926,27927,41490,42559,51321</link.rule.ids></links><search><creatorcontrib>Xia, Zhinan</creatorcontrib><title>Pseudo Asymptotically Periodic Solutions for Volterra Difference Equations of Convolution Type</title><title>Chinese annals of mathematics. Serie B</title><addtitle>Chin. Ann. Math. Ser. B</addtitle><description>In this paper, the author studies the existence and uniqueness of discrete pseudo asymptotically periodic solutions for nonlinear Volterra difference equations of convolution type, where the nonlinear perturbation is considered as Lipschitz condition or non-Lipschitz case, respectively. The results are a consequence of application of different fixed point theorems, namely, the contraction mapping principle, the Leray-Schauder alternative theorem and Matkowski’s fixed point technique.</description><subject>Applications of Mathematics</subject><subject>Asymptotic properties</subject><subject>Convolution</subject><subject>Difference equations</subject><subject>Fixed points (mathematics)</subject><subject>Lipschitz condition</subject><subject>Mapping</subject><subject>Mathematical analysis</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Nonlinear equations</subject><subject>Perturbation</subject><subject>Theorems</subject><issn>0252-9599</issn><issn>1860-6261</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp1kE1LwzAYgIMoOKc_wFvAg6dqPtvmOOb8gIEDp0dDliajs2u6pFX7783oYCcP4b08z_uSB4BrjO4wQtl9wJghnCAs4mN5Qk7ACOcpSlKS4lMwQoSTRHAhzsFFCBsUoYyjEfhcBNMVDk5Cv21a15ZaVVUPF8aXrig1fHNV15auDtA6Dz9c1RrvFXworTXe1NrA2a5TA-EsnLr6-2DAZd-YS3BmVRXM1WGOwfvjbDl9TuavTy_TyTzRlOVtYrjKlaCKpkRTTTlJlWaExI8xLXjGVxkTOEOrAlO-MqnNsSi4sJoSoVJbFHQMboe9P6q2ql7Ljet8HS_K8Ft_SUNiGMQQopG8GcjGu11nQntECYkJRc5SEik8UNq7ELyxsvHlVvleYiT3weUQXEZB7oPLvUMGJ0S2Xht_3Py_9AfR-IMf</recordid><startdate>20190701</startdate><enddate>20190701</enddate><creator>Xia, Zhinan</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><general>Department of Applied Mathematics, Zhejiang University of Technology, Hangzhou 310023, China</general><scope>AAYXX</scope><scope>CITATION</scope><scope>2B.</scope><scope>4A8</scope><scope>92I</scope><scope>93N</scope><scope>PSX</scope><scope>TCJ</scope></search><sort><creationdate>20190701</creationdate><title>Pseudo Asymptotically Periodic Solutions for Volterra Difference Equations of Convolution Type</title><author>Xia, Zhinan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c348t-e5a8a93a362c3c3526ac4220074c9575b749170bd135be6f819d59fc329a6fdd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Applications of Mathematics</topic><topic>Asymptotic properties</topic><topic>Convolution</topic><topic>Difference equations</topic><topic>Fixed points (mathematics)</topic><topic>Lipschitz condition</topic><topic>Mapping</topic><topic>Mathematical analysis</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Nonlinear equations</topic><topic>Perturbation</topic><topic>Theorems</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xia, Zhinan</creatorcontrib><collection>CrossRef</collection><collection>Wanfang Data Journals - Hong Kong</collection><collection>WANFANG Data Centre</collection><collection>Wanfang Data Journals</collection><collection>万方数据期刊 - 香港版</collection><collection>China Online Journals (COJ)</collection><collection>China Online Journals (COJ)</collection><jtitle>Chinese annals of mathematics. Serie B</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Xia, Zhinan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Pseudo Asymptotically Periodic Solutions for Volterra Difference Equations of Convolution Type</atitle><jtitle>Chinese annals of mathematics. Serie B</jtitle><stitle>Chin. Ann. Math. Ser. B</stitle><date>2019-07-01</date><risdate>2019</risdate><volume>40</volume><issue>4</issue><spage>501</spage><epage>514</epage><pages>501-514</pages><issn>0252-9599</issn><eissn>1860-6261</eissn><abstract>In this paper, the author studies the existence and uniqueness of discrete pseudo asymptotically periodic solutions for nonlinear Volterra difference equations of convolution type, where the nonlinear perturbation is considered as Lipschitz condition or non-Lipschitz case, respectively. The results are a consequence of application of different fixed point theorems, namely, the contraction mapping principle, the Leray-Schauder alternative theorem and Matkowski’s fixed point technique.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s11401-019-0148-2</doi><tpages>14</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0252-9599
ispartof Chinese annals of mathematics. Serie B, 2019-07, Vol.40 (4), p.501-514
issn 0252-9599
1860-6261
language eng
recordid cdi_wanfang_journals_sxnk_e201904003
source Alma/SFX Local Collection; SpringerLink Journals - AutoHoldings
subjects Applications of Mathematics
Asymptotic properties
Convolution
Difference equations
Fixed points (mathematics)
Lipschitz condition
Mapping
Mathematical analysis
Mathematics
Mathematics and Statistics
Nonlinear equations
Perturbation
Theorems
title Pseudo Asymptotically Periodic Solutions for Volterra Difference Equations of Convolution Type
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-17T19%3A39%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-wanfang_jour_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Pseudo%20Asymptotically%20Periodic%20Solutions%20for%20Volterra%20Difference%20Equations%20of%20Convolution%20Type&rft.jtitle=Chinese%20annals%20of%20mathematics.%20Serie%20B&rft.au=Xia,%20Zhinan&rft.date=2019-07-01&rft.volume=40&rft.issue=4&rft.spage=501&rft.epage=514&rft.pages=501-514&rft.issn=0252-9599&rft.eissn=1860-6261&rft_id=info:doi/10.1007/s11401-019-0148-2&rft_dat=%3Cwanfang_jour_proqu%3Esxnk_e201904003%3C/wanfang_jour_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2240198462&rft_id=info:pmid/&rft_wanfj_id=sxnk_e201904003&rfr_iscdi=true