Pseudo Asymptotically Periodic Solutions for Volterra Difference Equations of Convolution Type
In this paper, the author studies the existence and uniqueness of discrete pseudo asymptotically periodic solutions for nonlinear Volterra difference equations of convolution type, where the nonlinear perturbation is considered as Lipschitz condition or non-Lipschitz case, respectively. The results...
Gespeichert in:
Veröffentlicht in: | Chinese annals of mathematics. Serie B 2019-07, Vol.40 (4), p.501-514 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 514 |
---|---|
container_issue | 4 |
container_start_page | 501 |
container_title | Chinese annals of mathematics. Serie B |
container_volume | 40 |
creator | Xia, Zhinan |
description | In this paper, the author studies the existence and uniqueness of discrete pseudo asymptotically periodic solutions for nonlinear Volterra difference equations of convolution type, where the nonlinear perturbation is considered as Lipschitz condition or non-Lipschitz case, respectively. The results are a consequence of application of different fixed point theorems, namely, the contraction mapping principle, the Leray-Schauder alternative theorem and Matkowski’s fixed point technique. |
doi_str_mv | 10.1007/s11401-019-0148-2 |
format | Article |
fullrecord | <record><control><sourceid>wanfang_jour_proqu</sourceid><recordid>TN_cdi_wanfang_journals_sxnk_e201904003</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><wanfj_id>sxnk_e201904003</wanfj_id><sourcerecordid>sxnk_e201904003</sourcerecordid><originalsourceid>FETCH-LOGICAL-c348t-e5a8a93a362c3c3526ac4220074c9575b749170bd135be6f819d59fc329a6fdd3</originalsourceid><addsrcrecordid>eNp1kE1LwzAYgIMoOKc_wFvAg6dqPtvmOOb8gIEDp0dDliajs2u6pFX7783oYCcP4b08z_uSB4BrjO4wQtl9wJghnCAs4mN5Qk7ACOcpSlKS4lMwQoSTRHAhzsFFCBsUoYyjEfhcBNMVDk5Cv21a15ZaVVUPF8aXrig1fHNV15auDtA6Dz9c1RrvFXworTXe1NrA2a5TA-EsnLr6-2DAZd-YS3BmVRXM1WGOwfvjbDl9TuavTy_TyTzRlOVtYrjKlaCKpkRTTTlJlWaExI8xLXjGVxkTOEOrAlO-MqnNsSi4sJoSoVJbFHQMboe9P6q2ql7Ljet8HS_K8Ft_SUNiGMQQopG8GcjGu11nQntECYkJRc5SEik8UNq7ELyxsvHlVvleYiT3weUQXEZB7oPLvUMGJ0S2Xht_3Py_9AfR-IMf</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2240198462</pqid></control><display><type>article</type><title>Pseudo Asymptotically Periodic Solutions for Volterra Difference Equations of Convolution Type</title><source>Alma/SFX Local Collection</source><source>SpringerLink Journals - AutoHoldings</source><creator>Xia, Zhinan</creator><creatorcontrib>Xia, Zhinan</creatorcontrib><description>In this paper, the author studies the existence and uniqueness of discrete pseudo asymptotically periodic solutions for nonlinear Volterra difference equations of convolution type, where the nonlinear perturbation is considered as Lipschitz condition or non-Lipschitz case, respectively. The results are a consequence of application of different fixed point theorems, namely, the contraction mapping principle, the Leray-Schauder alternative theorem and Matkowski’s fixed point technique.</description><identifier>ISSN: 0252-9599</identifier><identifier>EISSN: 1860-6261</identifier><identifier>DOI: 10.1007/s11401-019-0148-2</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Applications of Mathematics ; Asymptotic properties ; Convolution ; Difference equations ; Fixed points (mathematics) ; Lipschitz condition ; Mapping ; Mathematical analysis ; Mathematics ; Mathematics and Statistics ; Nonlinear equations ; Perturbation ; Theorems</subject><ispartof>Chinese annals of mathematics. Serie B, 2019-07, Vol.40 (4), p.501-514</ispartof><rights>The Editorial Office of CAM and Springer-Verlag Berlin Heidelberg 2019</rights><rights>Copyright Springer Nature B.V. 2019</rights><rights>Copyright © Wanfang Data Co. Ltd. All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c348t-e5a8a93a362c3c3526ac4220074c9575b749170bd135be6f819d59fc329a6fdd3</citedby><cites>FETCH-LOGICAL-c348t-e5a8a93a362c3c3526ac4220074c9575b749170bd135be6f819d59fc329a6fdd3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://www.wanfangdata.com.cn/images/PeriodicalImages/sxnk-e/sxnk-e.jpg</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11401-019-0148-2$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11401-019-0148-2$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>315,781,785,27926,27927,41490,42559,51321</link.rule.ids></links><search><creatorcontrib>Xia, Zhinan</creatorcontrib><title>Pseudo Asymptotically Periodic Solutions for Volterra Difference Equations of Convolution Type</title><title>Chinese annals of mathematics. Serie B</title><addtitle>Chin. Ann. Math. Ser. B</addtitle><description>In this paper, the author studies the existence and uniqueness of discrete pseudo asymptotically periodic solutions for nonlinear Volterra difference equations of convolution type, where the nonlinear perturbation is considered as Lipschitz condition or non-Lipschitz case, respectively. The results are a consequence of application of different fixed point theorems, namely, the contraction mapping principle, the Leray-Schauder alternative theorem and Matkowski’s fixed point technique.</description><subject>Applications of Mathematics</subject><subject>Asymptotic properties</subject><subject>Convolution</subject><subject>Difference equations</subject><subject>Fixed points (mathematics)</subject><subject>Lipschitz condition</subject><subject>Mapping</subject><subject>Mathematical analysis</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Nonlinear equations</subject><subject>Perturbation</subject><subject>Theorems</subject><issn>0252-9599</issn><issn>1860-6261</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp1kE1LwzAYgIMoOKc_wFvAg6dqPtvmOOb8gIEDp0dDliajs2u6pFX7783oYCcP4b08z_uSB4BrjO4wQtl9wJghnCAs4mN5Qk7ACOcpSlKS4lMwQoSTRHAhzsFFCBsUoYyjEfhcBNMVDk5Cv21a15ZaVVUPF8aXrig1fHNV15auDtA6Dz9c1RrvFXworTXe1NrA2a5TA-EsnLr6-2DAZd-YS3BmVRXM1WGOwfvjbDl9TuavTy_TyTzRlOVtYrjKlaCKpkRTTTlJlWaExI8xLXjGVxkTOEOrAlO-MqnNsSi4sJoSoVJbFHQMboe9P6q2ql7Ljet8HS_K8Ft_SUNiGMQQopG8GcjGu11nQntECYkJRc5SEik8UNq7ELyxsvHlVvleYiT3weUQXEZB7oPLvUMGJ0S2Xht_3Py_9AfR-IMf</recordid><startdate>20190701</startdate><enddate>20190701</enddate><creator>Xia, Zhinan</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><general>Department of Applied Mathematics, Zhejiang University of Technology, Hangzhou 310023, China</general><scope>AAYXX</scope><scope>CITATION</scope><scope>2B.</scope><scope>4A8</scope><scope>92I</scope><scope>93N</scope><scope>PSX</scope><scope>TCJ</scope></search><sort><creationdate>20190701</creationdate><title>Pseudo Asymptotically Periodic Solutions for Volterra Difference Equations of Convolution Type</title><author>Xia, Zhinan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c348t-e5a8a93a362c3c3526ac4220074c9575b749170bd135be6f819d59fc329a6fdd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Applications of Mathematics</topic><topic>Asymptotic properties</topic><topic>Convolution</topic><topic>Difference equations</topic><topic>Fixed points (mathematics)</topic><topic>Lipschitz condition</topic><topic>Mapping</topic><topic>Mathematical analysis</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Nonlinear equations</topic><topic>Perturbation</topic><topic>Theorems</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xia, Zhinan</creatorcontrib><collection>CrossRef</collection><collection>Wanfang Data Journals - Hong Kong</collection><collection>WANFANG Data Centre</collection><collection>Wanfang Data Journals</collection><collection>万方数据期刊 - 香港版</collection><collection>China Online Journals (COJ)</collection><collection>China Online Journals (COJ)</collection><jtitle>Chinese annals of mathematics. Serie B</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Xia, Zhinan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Pseudo Asymptotically Periodic Solutions for Volterra Difference Equations of Convolution Type</atitle><jtitle>Chinese annals of mathematics. Serie B</jtitle><stitle>Chin. Ann. Math. Ser. B</stitle><date>2019-07-01</date><risdate>2019</risdate><volume>40</volume><issue>4</issue><spage>501</spage><epage>514</epage><pages>501-514</pages><issn>0252-9599</issn><eissn>1860-6261</eissn><abstract>In this paper, the author studies the existence and uniqueness of discrete pseudo asymptotically periodic solutions for nonlinear Volterra difference equations of convolution type, where the nonlinear perturbation is considered as Lipschitz condition or non-Lipschitz case, respectively. The results are a consequence of application of different fixed point theorems, namely, the contraction mapping principle, the Leray-Schauder alternative theorem and Matkowski’s fixed point technique.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s11401-019-0148-2</doi><tpages>14</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0252-9599 |
ispartof | Chinese annals of mathematics. Serie B, 2019-07, Vol.40 (4), p.501-514 |
issn | 0252-9599 1860-6261 |
language | eng |
recordid | cdi_wanfang_journals_sxnk_e201904003 |
source | Alma/SFX Local Collection; SpringerLink Journals - AutoHoldings |
subjects | Applications of Mathematics Asymptotic properties Convolution Difference equations Fixed points (mathematics) Lipschitz condition Mapping Mathematical analysis Mathematics Mathematics and Statistics Nonlinear equations Perturbation Theorems |
title | Pseudo Asymptotically Periodic Solutions for Volterra Difference Equations of Convolution Type |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-17T19%3A39%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-wanfang_jour_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Pseudo%20Asymptotically%20Periodic%20Solutions%20for%20Volterra%20Difference%20Equations%20of%20Convolution%20Type&rft.jtitle=Chinese%20annals%20of%20mathematics.%20Serie%20B&rft.au=Xia,%20Zhinan&rft.date=2019-07-01&rft.volume=40&rft.issue=4&rft.spage=501&rft.epage=514&rft.pages=501-514&rft.issn=0252-9599&rft.eissn=1860-6261&rft_id=info:doi/10.1007/s11401-019-0148-2&rft_dat=%3Cwanfang_jour_proqu%3Esxnk_e201904003%3C/wanfang_jour_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2240198462&rft_id=info:pmid/&rft_wanfj_id=sxnk_e201904003&rfr_iscdi=true |