Pseudo Asymptotically Periodic Solutions for Volterra Difference Equations of Convolution Type

In this paper, the author studies the existence and uniqueness of discrete pseudo asymptotically periodic solutions for nonlinear Volterra difference equations of convolution type, where the nonlinear perturbation is considered as Lipschitz condition or non-Lipschitz case, respectively. The results...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Chinese annals of mathematics. Serie B 2019-07, Vol.40 (4), p.501-514
1. Verfasser: Xia, Zhinan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper, the author studies the existence and uniqueness of discrete pseudo asymptotically periodic solutions for nonlinear Volterra difference equations of convolution type, where the nonlinear perturbation is considered as Lipschitz condition or non-Lipschitz case, respectively. The results are a consequence of application of different fixed point theorems, namely, the contraction mapping principle, the Leray-Schauder alternative theorem and Matkowski’s fixed point technique.
ISSN:0252-9599
1860-6261
DOI:10.1007/s11401-019-0148-2