Pseudo Asymptotically Periodic Solutions for Volterra Difference Equations of Convolution Type
In this paper, the author studies the existence and uniqueness of discrete pseudo asymptotically periodic solutions for nonlinear Volterra difference equations of convolution type, where the nonlinear perturbation is considered as Lipschitz condition or non-Lipschitz case, respectively. The results...
Gespeichert in:
Veröffentlicht in: | Chinese annals of mathematics. Serie B 2019-07, Vol.40 (4), p.501-514 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this paper, the author studies the existence and uniqueness of discrete pseudo asymptotically periodic solutions for nonlinear Volterra difference equations of convolution type, where the nonlinear perturbation is considered as Lipschitz condition or non-Lipschitz case, respectively. The results are a consequence of application of different fixed point theorems, namely, the contraction mapping principle, the Leray-Schauder alternative theorem and Matkowski’s fixed point technique. |
---|---|
ISSN: | 0252-9599 1860-6261 |
DOI: | 10.1007/s11401-019-0148-2 |