Error Analysis on Hérmite Learning with Gradient Data

This paper deals with Hérmite learning which aims at obtaining the target function from the samples of function values and the gradient values. Error analysis is conducted for these algorithms by means of approaches from convex analysis in the framework of multi-task vector learning and the improved...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Chinese annals of mathematics. Serie B 2018-07, Vol.39 (4), p.705-720
Hauptverfasser: Sheng, Baohuai, Wang, Jianli, Xiang, Daohong
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This paper deals with Hérmite learning which aims at obtaining the target function from the samples of function values and the gradient values. Error analysis is conducted for these algorithms by means of approaches from convex analysis in the framework of multi-task vector learning and the improved learning rates are derived.
ISSN:0252-9599
1860-6261
DOI:10.1007/s11401-018-0091-7