Statistical Structures on Metric Path Spaces
The authors extend the notion of statistical structure from Riemannian geom- etry to the general framework of path spaces endowed with a nonlinear connection and a generalized metric. Two particular cases of statistical data are defined. The existence and uniqueness of a nonlinear connection corresp...
Gespeichert in:
Veröffentlicht in: | Chinese annals of mathematics. Serie B 2012-11, Vol.33 (6), p.889-902 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 902 |
---|---|
container_issue | 6 |
container_start_page | 889 |
container_title | Chinese annals of mathematics. Serie B |
container_volume | 33 |
creator | Mircea CRASMAREANU Cristina-Elena HRETCANU |
description | The authors extend the notion of statistical structure from Riemannian geom- etry to the general framework of path spaces endowed with a nonlinear connection and a generalized metric. Two particular cases of statistical data are defined. The existence and uniqueness of a nonlinear connection corresponding to these classes is proved. Two Koszul tensors are introduced in accordance with the Riemannian approach. As applications, the authors treat the Finslerian (α,β)-metrics and the Beil metrics used in relativity and field theories while the support Riemannian metric is the Fisher-Rao metric of a statistical model. |
doi_str_mv | 10.1007/s11401-012-0745-9 |
format | Article |
fullrecord | <record><control><sourceid>wanfang_jour_cross</sourceid><recordid>TN_cdi_wanfang_journals_sxnk_e201206009</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cqvip_id>43782058</cqvip_id><wanfj_id>sxnk_e201206009</wanfj_id><sourcerecordid>sxnk_e201206009</sourcerecordid><originalsourceid>FETCH-LOGICAL-c389t-e1a7c641e90bb196b85237a323206f9bf374b7e8c2dc2a1b42064972de21d3993</originalsourceid><addsrcrecordid>eNp9kM1OwzAQhC0EEqXwANzCiQuGXdux4yOq-JOKQCqcLcd12pSSFNsV8PYkSgU3TiuN5pvRDiGnCJcIoK4iogCkgIyCEjnVe2SEhQQqmcR9MgKWM6pzrQ_JUYwrABQqhxG5mCWb6phqZ9fZLIWtS9vgY9Y22aNPoXbZs03LbLaxzsdjclDZdfQnuzsmr7c3L5N7On26e5hcT6njhU7Uo1VOCvQayhK1LIuccWU54wxkpcuKK1EqXzg2d8xiKTpZaMXmnuGca83H5HzI_bRNZZuFWbXb0HSNJn41b8az7k2QAL0TB6cLbYzBV2YT6ncbvg2C6YcxwzCmI0w_jOkZNjCx8zYLH_7i_4POdkXLtll8dNxvk-CqYJAX_AcRQ27m</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Statistical Structures on Metric Path Spaces</title><source>SpringerLink_现刊</source><source>Alma/SFX Local Collection</source><creator>Mircea CRASMAREANU Cristina-Elena HRETCANU</creator><creatorcontrib>Mircea CRASMAREANU Cristina-Elena HRETCANU</creatorcontrib><description>The authors extend the notion of statistical structure from Riemannian geom- etry to the general framework of path spaces endowed with a nonlinear connection and a generalized metric. Two particular cases of statistical data are defined. The existence and uniqueness of a nonlinear connection corresponding to these classes is proved. Two Koszul tensors are introduced in accordance with the Riemannian approach. As applications, the authors treat the Finslerian (α,β)-metrics and the Beil metrics used in relativity and field theories while the support Riemannian metric is the Fisher-Rao metric of a statistical model.</description><identifier>ISSN: 0252-9599</identifier><identifier>EISSN: 1860-6261</identifier><identifier>DOI: 10.1007/s11401-012-0745-9</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer-Verlag</publisher><subject>Applications of Mathematics ; Koszul模 ; Mathematics ; Mathematics and Statistics ; 公制 ; 广义度量空间 ; 空间结构 ; 统计数据 ; 统计结构 ; 路径 ; 黎曼度量</subject><ispartof>Chinese annals of mathematics. Serie B, 2012-11, Vol.33 (6), p.889-902</ispartof><rights>Fudan University and Springer-Verlag Berlin Heidelberg 2012</rights><rights>Copyright © Wanfang Data Co. Ltd. All Rights Reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c389t-e1a7c641e90bb196b85237a323206f9bf374b7e8c2dc2a1b42064972de21d3993</citedby><cites>FETCH-LOGICAL-c389t-e1a7c641e90bb196b85237a323206f9bf374b7e8c2dc2a1b42064972de21d3993</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://image.cqvip.com/vip1000/qk/87055X/87055X.jpg</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11401-012-0745-9$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11401-012-0745-9$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Mircea CRASMAREANU Cristina-Elena HRETCANU</creatorcontrib><title>Statistical Structures on Metric Path Spaces</title><title>Chinese annals of mathematics. Serie B</title><addtitle>Chin. Ann. Math. Ser. B</addtitle><addtitle>Chinese Annals of Mathematics</addtitle><description>The authors extend the notion of statistical structure from Riemannian geom- etry to the general framework of path spaces endowed with a nonlinear connection and a generalized metric. Two particular cases of statistical data are defined. The existence and uniqueness of a nonlinear connection corresponding to these classes is proved. Two Koszul tensors are introduced in accordance with the Riemannian approach. As applications, the authors treat the Finslerian (α,β)-metrics and the Beil metrics used in relativity and field theories while the support Riemannian metric is the Fisher-Rao metric of a statistical model.</description><subject>Applications of Mathematics</subject><subject>Koszul模</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>公制</subject><subject>广义度量空间</subject><subject>空间结构</subject><subject>统计数据</subject><subject>统计结构</subject><subject>路径</subject><subject>黎曼度量</subject><issn>0252-9599</issn><issn>1860-6261</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><recordid>eNp9kM1OwzAQhC0EEqXwANzCiQuGXdux4yOq-JOKQCqcLcd12pSSFNsV8PYkSgU3TiuN5pvRDiGnCJcIoK4iogCkgIyCEjnVe2SEhQQqmcR9MgKWM6pzrQ_JUYwrABQqhxG5mCWb6phqZ9fZLIWtS9vgY9Y22aNPoXbZs03LbLaxzsdjclDZdfQnuzsmr7c3L5N7On26e5hcT6njhU7Uo1VOCvQayhK1LIuccWU54wxkpcuKK1EqXzg2d8xiKTpZaMXmnuGca83H5HzI_bRNZZuFWbXb0HSNJn41b8az7k2QAL0TB6cLbYzBV2YT6ncbvg2C6YcxwzCmI0w_jOkZNjCx8zYLH_7i_4POdkXLtll8dNxvk-CqYJAX_AcRQ27m</recordid><startdate>20121101</startdate><enddate>20121101</enddate><creator>Mircea CRASMAREANU Cristina-Elena HRETCANU</creator><general>Springer-Verlag</general><general>Faculty of Mathematics, Alexandru Ioan Cuza University, Iasi 700506, Romania%Faculty of Food Engineering, Stefan Cel Mare University, Suceava 720229, Romania</general><scope>2RA</scope><scope>92L</scope><scope>CQIGP</scope><scope>~WA</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>2B.</scope><scope>4A8</scope><scope>92I</scope><scope>93N</scope><scope>PSX</scope><scope>TCJ</scope></search><sort><creationdate>20121101</creationdate><title>Statistical Structures on Metric Path Spaces</title><author>Mircea CRASMAREANU Cristina-Elena HRETCANU</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c389t-e1a7c641e90bb196b85237a323206f9bf374b7e8c2dc2a1b42064972de21d3993</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Applications of Mathematics</topic><topic>Koszul模</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>公制</topic><topic>广义度量空间</topic><topic>空间结构</topic><topic>统计数据</topic><topic>统计结构</topic><topic>路径</topic><topic>黎曼度量</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mircea CRASMAREANU Cristina-Elena HRETCANU</creatorcontrib><collection>维普_期刊</collection><collection>中文科技期刊数据库-CALIS站点</collection><collection>维普中文期刊数据库</collection><collection>中文科技期刊数据库- 镜像站点</collection><collection>CrossRef</collection><collection>Wanfang Data Journals - Hong Kong</collection><collection>WANFANG Data Centre</collection><collection>Wanfang Data Journals</collection><collection>万方数据期刊 - 香港版</collection><collection>China Online Journals (COJ)</collection><collection>China Online Journals (COJ)</collection><jtitle>Chinese annals of mathematics. Serie B</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mircea CRASMAREANU Cristina-Elena HRETCANU</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Statistical Structures on Metric Path Spaces</atitle><jtitle>Chinese annals of mathematics. Serie B</jtitle><stitle>Chin. Ann. Math. Ser. B</stitle><addtitle>Chinese Annals of Mathematics</addtitle><date>2012-11-01</date><risdate>2012</risdate><volume>33</volume><issue>6</issue><spage>889</spage><epage>902</epage><pages>889-902</pages><issn>0252-9599</issn><eissn>1860-6261</eissn><abstract>The authors extend the notion of statistical structure from Riemannian geom- etry to the general framework of path spaces endowed with a nonlinear connection and a generalized metric. Two particular cases of statistical data are defined. The existence and uniqueness of a nonlinear connection corresponding to these classes is proved. Two Koszul tensors are introduced in accordance with the Riemannian approach. As applications, the authors treat the Finslerian (α,β)-metrics and the Beil metrics used in relativity and field theories while the support Riemannian metric is the Fisher-Rao metric of a statistical model.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer-Verlag</pub><doi>10.1007/s11401-012-0745-9</doi><tpages>14</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0252-9599 |
ispartof | Chinese annals of mathematics. Serie B, 2012-11, Vol.33 (6), p.889-902 |
issn | 0252-9599 1860-6261 |
language | eng |
recordid | cdi_wanfang_journals_sxnk_e201206009 |
source | SpringerLink_现刊; Alma/SFX Local Collection |
subjects | Applications of Mathematics Koszul模 Mathematics Mathematics and Statistics 公制 广义度量空间 空间结构 统计数据 统计结构 路径 黎曼度量 |
title | Statistical Structures on Metric Path Spaces |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T10%3A04%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-wanfang_jour_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Statistical%20Structures%20on%20Metric%20Path%20Spaces&rft.jtitle=Chinese%20annals%20of%20mathematics.%20Serie%20B&rft.au=Mircea%20CRASMAREANU%20Cristina-Elena%20HRETCANU&rft.date=2012-11-01&rft.volume=33&rft.issue=6&rft.spage=889&rft.epage=902&rft.pages=889-902&rft.issn=0252-9599&rft.eissn=1860-6261&rft_id=info:doi/10.1007/s11401-012-0745-9&rft_dat=%3Cwanfang_jour_cross%3Esxnk_e201206009%3C/wanfang_jour_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_cqvip_id=43782058&rft_wanfj_id=sxnk_e201206009&rfr_iscdi=true |