Statistical Structures on Metric Path Spaces
The authors extend the notion of statistical structure from Riemannian geom- etry to the general framework of path spaces endowed with a nonlinear connection and a generalized metric. Two particular cases of statistical data are defined. The existence and uniqueness of a nonlinear connection corresp...
Gespeichert in:
Veröffentlicht in: | Chinese annals of mathematics. Serie B 2012-11, Vol.33 (6), p.889-902 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The authors extend the notion of statistical structure from Riemannian geom- etry to the general framework of path spaces endowed with a nonlinear connection and a generalized metric. Two particular cases of statistical data are defined. The existence and uniqueness of a nonlinear connection corresponding to these classes is proved. Two Koszul tensors are introduced in accordance with the Riemannian approach. As applications, the authors treat the Finslerian (α,β)-metrics and the Beil metrics used in relativity and field theories while the support Riemannian metric is the Fisher-Rao metric of a statistical model. |
---|---|
ISSN: | 0252-9599 1860-6261 |
DOI: | 10.1007/s11401-012-0745-9 |