Statistical Structures on Metric Path Spaces

The authors extend the notion of statistical structure from Riemannian geom- etry to the general framework of path spaces endowed with a nonlinear connection and a generalized metric. Two particular cases of statistical data are defined. The existence and uniqueness of a nonlinear connection corresp...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Chinese annals of mathematics. Serie B 2012-11, Vol.33 (6), p.889-902
1. Verfasser: Mircea CRASMAREANU Cristina-Elena HRETCANU
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The authors extend the notion of statistical structure from Riemannian geom- etry to the general framework of path spaces endowed with a nonlinear connection and a generalized metric. Two particular cases of statistical data are defined. The existence and uniqueness of a nonlinear connection corresponding to these classes is proved. Two Koszul tensors are introduced in accordance with the Riemannian approach. As applications, the authors treat the Finslerian (α,β)-metrics and the Beil metrics used in relativity and field theories while the support Riemannian metric is the Fisher-Rao metric of a statistical model.
ISSN:0252-9599
1860-6261
DOI:10.1007/s11401-012-0745-9