Global Smooth Solutions to the 2-D Inhomogeneous Navier-Stokes Equations with Variable Viscosity
Under the assumptions that the initial density ρ0 is close enough to 1 and ρ0 -- 1∈ H^s+1(R^2), u0 ∈ H^s(R^2) ∩ H^-ε(R^2) for s 〉 2 and 0 〈 ε 〈 1, the authors prove the global existence and uniqueness of smooth solutions to the 2-D inhomogeneous Navier-Stokes equations with the viscous coefficient d...
Gespeichert in:
Veröffentlicht in: | Chinese annals of mathematics. Serie B 2009-09, Vol.30 (5), p.607-630 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Under the assumptions that the initial density ρ0 is close enough to 1 and ρ0 -- 1∈ H^s+1(R^2), u0 ∈ H^s(R^2) ∩ H^-ε(R^2) for s 〉 2 and 0 〈 ε 〈 1, the authors prove the global existence and uniqueness of smooth solutions to the 2-D inhomogeneous Navier-Stokes equations with the viscous coefficient depending on the density of the fluid. Furthermore, the L^2 decay rate of the velocity field is obtained. |
---|---|
ISSN: | 0252-9599 1860-6261 |
DOI: | 10.1007/s11401-009-0027-3 |