Global Smooth Solutions to the 2-D Inhomogeneous Navier-Stokes Equations with Variable Viscosity

Under the assumptions that the initial density ρ0 is close enough to 1 and ρ0 -- 1∈ H^s+1(R^2), u0 ∈ H^s(R^2) ∩ H^-ε(R^2) for s 〉 2 and 0 〈 ε 〈 1, the authors prove the global existence and uniqueness of smooth solutions to the 2-D inhomogeneous Navier-Stokes equations with the viscous coefficient d...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Chinese annals of mathematics. Serie B 2009-09, Vol.30 (5), p.607-630
Hauptverfasser: Gui, Guilong, Zhang, Ping
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Under the assumptions that the initial density ρ0 is close enough to 1 and ρ0 -- 1∈ H^s+1(R^2), u0 ∈ H^s(R^2) ∩ H^-ε(R^2) for s 〉 2 and 0 〈 ε 〈 1, the authors prove the global existence and uniqueness of smooth solutions to the 2-D inhomogeneous Navier-Stokes equations with the viscous coefficient depending on the density of the fluid. Furthermore, the L^2 decay rate of the velocity field is obtained.
ISSN:0252-9599
1860-6261
DOI:10.1007/s11401-009-0027-3