Coincidence Properties for Maps from the Torus to the Klein Bottle

The authors study the coincidence theory for pairs of maps from the Torus to the Klein bottle. Reidemeister classes and the Nielsen number are computed, and it is shown that any given pair of maps satisfies the Wecken property. The 1-parameter Wecken property is studied and a partial negative answer...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Chinese annals of mathematics. Serie B 2008-07, Vol.29 (4), p.425-440
1. Verfasser: Daciberg L. GONCALVES Michael R. KELLY
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The authors study the coincidence theory for pairs of maps from the Torus to the Klein bottle. Reidemeister classes and the Nielsen number are computed, and it is shown that any given pair of maps satisfies the Wecken property. The 1-parameter Wecken property is studied and a partial negative answer is derived. That is for all pairs of coincidence free maps a countable family of pairs of maps in the homotopy class is constructed such that no two members may be joined by a coincidence free homotopy.
ISSN:0252-9599
1860-6261
DOI:10.1007/s11401-007-0099-x