Vertex-distinguishing VE-total Colorings of Cycles and Complete Graphs
Let G be a simple graph of order at least 2.A VE-total-coloring using k colors of a graph G is a mapping f from V (G) E(G) into {1,2,···,k} such that no edge receives the same color as one of its endpoints.Let C(u)={f(u)} {f(uv) | uv ∈ E(G)} be the color-set of u.If C(u)=C(v) for any two vertices u...
Gespeichert in:
Veröffentlicht in: | 数学季刊(英文版) 2012, Vol.27 (1), p.92-97 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Let G be a simple graph of order at least 2.A VE-total-coloring using k colors of a graph G is a mapping f from V (G) E(G) into {1,2,···,k} such that no edge receives the same color as one of its endpoints.Let C(u)={f(u)} {f(uv) | uv ∈ E(G)} be the color-set of u.If C(u)=C(v) for any two vertices u and v of V (G),then f is called a k-vertex-distinguishing VE-total coloring of G or a k-VDVET coloring of G for short.The minimum number of colors required for a VDVET coloring of G is denoted by χ ve vt (G) and it is called the VDVET chromatic number of G.In this paper we get cycle C n,path P n and complete graph K n of their VDVET chromatic numbers and propose a related conjecture. |
---|---|
ISSN: | 1002-0462 |