基于SOM-I-SVM耦合模型的滑坡易发性评价
P642.22; 在使用机器学习模型对滑坡进行易发性评价时,通常会在滑坡影响范围之外随机选取非滑坡样本点,具有一定的误差.为了提高滑坡易发性评价的精度,将自组织映射(self-organizing map,SOM)神经网络、信息量模型(information,I)以及支持向量机模型(support vector machine,SVM)进行耦合,提出一种基于SOM-I-SVM模型的滑坡易发性评价方法,并将SOM神经网络与K均值聚类算法进行对比,验证模型的可靠性.以十堰市茅箭区为例,首先通过对环境因子的相关性及重要性分析,筛选出距水系距离、坡度、降雨量、距构造距离、相对高差、距道路距离、地层岩性...
Gespeichert in:
Veröffentlicht in: | 水文地质工程地质 2023-05, Vol.50 (3), p.125-137 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | chi |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | P642.22; 在使用机器学习模型对滑坡进行易发性评价时,通常会在滑坡影响范围之外随机选取非滑坡样本点,具有一定的误差.为了提高滑坡易发性评价的精度,将自组织映射(self-organizing map,SOM)神经网络、信息量模型(information,I)以及支持向量机模型(support vector machine,SVM)进行耦合,提出一种基于SOM-I-SVM模型的滑坡易发性评价方法,并将SOM神经网络与K均值聚类算法进行对比,验证模型的可靠性.以十堰市茅箭区为例,首先通过对环境因子的相关性及重要性分析,筛选出距水系距离、坡度、降雨量、距构造距离、相对高差、距道路距离、地层岩性等 7 个因子,建立滑坡易发性评价指标体系,在此基础上计算出各因子的分级信息量值,并作为模型的输入变量进行滑坡易发性评价.分别采用SOM神经网络和K均值聚类算法选取非滑坡样本,然后将样本数据集代入I-SVM模型预测滑坡易发性.将SVM、I-SVM、KMeans-I-SVM、SOM-I-SVM等 4 种模型预测精度进行对比,其ROC曲线下面积(AUC)分别为 0.82,0.88,0.90,0.91,说明SOM-I-SVM模型能有效提高滑坡易发性预测准确率. |
---|---|
ISSN: | 1000-3665 |
DOI: | 10.16030/j.cnki.issn.1000-3665.202206041 |