基于波段深度分析和BP神经网络的水稻色素含量高光谱估算
该文以水稻田间氮肥水平试验为基础,采用单变量的线性和非线性回归方法,建立基于植被指数的水稻色素含量高光谱估算模型。各植被指数对色素含量的估计能力分析结果显示,植被指数在色素含量较大时存在饱和问题,为此尝试将波段深度分析(BDA)与BP神经网络结合,以提高利用高光谱技术对水稻叶片色素含量的估算精度。基于连续统去除处理的水稻冠层高光谱数据(400~750nm),选取波段深度(BD)、波段深度比(BDR)、归一化波段深度(NBDI)和归一化面积波段指数(BNA)4种波段指数,在此基础上进行主成分分析(PCA)实现降维,然后采用反向传播(BP)神经网络方法对水稻叶片色素含量进行高光谱反演,探讨BDA与...
Gespeichert in:
Veröffentlicht in: | 中国生态农业学报 2017, Vol.25 (8), p.1224-1235 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | chi |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | 该文以水稻田间氮肥水平试验为基础,采用单变量的线性和非线性回归方法,建立基于植被指数的水稻色素含量高光谱估算模型。各植被指数对色素含量的估计能力分析结果显示,植被指数在色素含量较大时存在饱和问题,为此尝试将波段深度分析(BDA)与BP神经网络结合,以提高利用高光谱技术对水稻叶片色素含量的估算精度。基于连续统去除处理的水稻冠层高光谱数据(400~750nm),选取波段深度(BD)、波段深度比(BDR)、归一化波段深度(NBDI)和归一化面积波段指数(BNA)4种波段指数,在此基础上进行主成分分析(PCA)实现降维,然后采用反向传播(BP)神经网络方法对水稻叶片色素含量进行高光谱反演,探讨BDA与BP神经网络结合解决植被指数饱和问题的可能性和有效性。结果表明,波段深度分析突出了光谱吸收特征差异,挖掘了更多的潜在信息,使得光谱曲线的差异性得到增强。BD与BP结合的估算模型对水稻叶片中的类胡萝卜素含量估算精度最高(R2=0.61,RMSEP=0.128mg.g-1),BNA与BP结合的估算模型对水稻叶片中的叶绿素含量估算精度最高(R2=0.73,RMSEP=0.343mg.g-1)。对比分析BDA与BP结合的模型和植被指数最佳回归模型的精度,发现波段深度分析建立的BP神经网络模型能较好地解决饱和问题,提高水稻叶片色素含量的估算精度。 |
---|---|
ISSN: | 1671-3990 |
DOI: | 10.13930/j.cnki.cjea.170112 |