A Statistical Parameter Analysis and SVM Based Fault Diagnosis Strategy for Dynamically Tuned Gyroscopes

Gyro's fault diagnosis plays a critical role in inertia navigation systems for higher reliability and precision. A new fault diagnosis strategy based on the statistical parameter analysis (SPA) and support vector machine (SVM) classification model was proposed for dynamically tuned gyroscopes (DTG)....

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Shanghai jiao tong da xue xue bao 2007-10, Vol.12 (5), p.592-596
1. Verfasser: 徐国平 田蔚风 金志华 钱莉
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Gyro's fault diagnosis plays a critical role in inertia navigation systems for higher reliability and precision. A new fault diagnosis strategy based on the statistical parameter analysis (SPA) and support vector machine (SVM) classification model was proposed for dynamically tuned gyroscopes (DTG). The SPA, a kind of time domain analysis approach, was introduced to compute a set of statistical parameters of vibration signal as the state features of DTG, withwhich the SVM model, a novel learning machine based on statistical learning theory (SLT), was applied and constructed to train and identify the working state of DTG. The experimental results verify that the proposed diagnostic strategy can simply and effectively extract the state features of DTG, and it outperforms the radial-basis function (RBF) neural network based diagnostic method and can more reliably and accurately diagnose the working state of DTG.
ISSN:1007-1172
1995-8188