基于自适应颜色快速点特征直方图的托盘识别方法

TH166; 托盘识别是无人驾驶工业车辆进行货物搬运的关键技术之一.针对现有托盘识别方法低效耗时、鲁棒性差、参数选择随意的缺点,提出了一种基于自适应颜色快速点特征直方图的托盘识别方法.该方法使用Kinect V2传感器采集包含托盘的场景点云数据,点云经离群点剔除后,基于邻域特征熵函数最小准则获取每个点的最优邻域半径.提取点云关键点,计算关键点的颜色特征和自适应邻域快速点特征直方图,融合成自适应颜色快速点特征直方图,进行特征匹配与误匹配点对剔除,从而实现托盘识别.与固定邻域半径为0.012 m的快速点特征直方图对比,实验结果表明:基于自适应颜色快速点特征直方图的托盘识别精度提高了83.74%,特...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:上海交通大学学报 2023-03, Vol.57 (3), p.297-308
Hauptverfasser: 詹燕, 陈志慧, 朱宝昌, 朱婷婷, 邵益平, 鲁建厦
Format: Artikel
Sprache:chi
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:TH166; 托盘识别是无人驾驶工业车辆进行货物搬运的关键技术之一.针对现有托盘识别方法低效耗时、鲁棒性差、参数选择随意的缺点,提出了一种基于自适应颜色快速点特征直方图的托盘识别方法.该方法使用Kinect V2传感器采集包含托盘的场景点云数据,点云经离群点剔除后,基于邻域特征熵函数最小准则获取每个点的最优邻域半径.提取点云关键点,计算关键点的颜色特征和自适应邻域快速点特征直方图,融合成自适应颜色快速点特征直方图,进行特征匹配与误匹配点对剔除,从而实现托盘识别.与固定邻域半径为0.012 m的快速点特征直方图对比,实验结果表明:基于自适应颜色快速点特征直方图的托盘识别精度提高了83.74%,特征提取用时减少了35.55%,验证了方法的优越性.
ISSN:1006-2467
DOI:10.16183/j.cnki.jsjtu.2021.301