Iterative Rankine HOBEM analysis of hull-form effects in forward-speed diffraction problem

A time-domain numerical algorithm based on the higher-order boundary element method and the iterative time-marching scheme is proposed for seakeeping analysis. The ship waves generated by a hull advancing at a constant forward speed in incident waves and the resultant diffraction forces acting on th...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of hydrodynamics. Series B 2017-04, Vol.29 (2), p.226-234
1. Verfasser: 何广华 陈丽敏 张劲生 张世军
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A time-domain numerical algorithm based on the higher-order boundary element method and the iterative time-marching scheme is proposed for seakeeping analysis. The ship waves generated by a hull advancing at a constant forward speed in incident waves and the resultant diffraction forces acting on the hull are computed to investigate the hull-form effects on the hydrodynamic forces. A rectangular computational domain travelling at ship's speed is considered. An artificial damping beach for satisfying the radiation condition is installed at the outer portion of the free surface except the downstream side. An iterative time-marching scheme is employed for updating both kinematic and dynamic free-surface boundary conditions for numerical accuracy and stability. The boundary integral equation is solved by distributing higher-order boundary elements over the wetted body surface and the free surface. The hull-form effects on the naval hydrodynamics are investigated by comparing three different Wigley models. Finally, the corresponding unsteady wave patterns and the wave profiles around the hulls are illustrated and discussed.
ISSN:1001-6058
1878-0342
DOI:10.1016/S1001-6058(16)60732-1