CLIMATE CHANGE: LONG-TERM TRENDS AND SHORT-TERM OSCILLATIONS
Identifying the Northern Hemisphere (NH) temperature reconstruction and instrumental data for the past 1000 years shows that climate change in the last millennium includes long-term trends and varioas oscillations. Two long-term trends and the quasi-70-year oscillation were detected in the global te...
Gespeichert in:
Veröffentlicht in: | Journal of Tropical Meteorology 2006-12, Vol.12 (2), p.139-149 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | chi ; eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Identifying the Northern Hemisphere (NH) temperature reconstruction and instrumental data for the past 1000 years shows that climate change in the last millennium includes long-term trends and varioas oscillations. Two long-term trends and the quasi-70-year oscillation were detected in the global temperature series tbr the last 140 years and the NH millennium series. One important feature was emphasized that temperature decreases slowly but it increases rapidly based on the analysis of different series. Benefits can be obtained of climate change from understanding various long-term trends and oscillations. Millennial temperature proxies from the natural climate system and time series of nonlinear model system are used in understanding the natural climate change and recognizing potential benefits by using the method of wavelet transform analysis. The results from numerical modeling show that major oscillations contained in numerical solutions on the interdecadal timescale are consistent with that of natural proxies. It seems that these oscillations in the climate change are not directly linked with the solar radiation as an external tbrcing. This investigation may conclude that the climate variability at the interdecadal timescale strongly depends on the internal nonlinear effects in the climate system. |
---|---|
ISSN: | 1006-8775 |