Identification Standard for ENSO Events and Its Application to Climate Monitoring and Prediction in China
The El Niño–Southern Oscillation (ENSO) reflects anomalous variations in the sea surface temperature (SST) and atmospheric circulation over the tropical central–eastern Pacific. It remarkably impacts on weather and climate worldwide, so monitoring and prediction of ENSO draw intensive research. Howe...
Gespeichert in:
Veröffentlicht in: | Journal of Meteorological Research 2018-12, Vol.32 (6), p.923-936 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The El Niño–Southern Oscillation (ENSO) reflects anomalous variations in the sea surface temperature (SST) and atmospheric circulation over the tropical central–eastern Pacific. It remarkably impacts on weather and climate worldwide, so monitoring and prediction of ENSO draw intensive research. However, there is not yet a unique standard internationally for identifying the timing, intensity, and type of ENSO events. The National Climate Center of China Meteorological Administration (NCC/CMA) has led the effort to establish a national identification standard of ENSO events, which was officially endorsed by the National Standardization Administration of China and implemented operationally in NCC/CMA in 2017. In this paper, two key aspects of this standard are introduced. First, the Niño3.4 SST anomaly index, which is well-recognized in the international ENSO research community and used operationally in the US, has replaced the previous Niño Z index and been used to identify the start, end, and peak times, and intensity of ENSO events. Second, two new indices—the eastern Pacific ENSO (EP) index and the central Pacific ENSO (CP) index, based on the SST conditions in Niño3 and Niño4 region respectively, are calculated to first determine the ENSO type before monitoring and assessing the impacts of ENSO on China’s climate. With this standard, all historical ENSO events since 1950 are consistently re-identified; their distinct properties are diagnosed and presented; and the impacts of ENSO events under different types on China’s climate are re-assessed. This standard is also employed to validate the intensity, grade, and type of the ENSO events predicted by the NCC/CMA operational ENSO prediction system. The new standard and the thus derived unified set of re-analyzed historical ENSO events and associated information provide a good reference for better monitoring and prediction of future ENSO events. |
---|---|
ISSN: | 2095-6037 2198-0934 |
DOI: | 10.1007/s13351-018-8078-6 |