Comparison of Spatial Interpolation Methods for Gridded Bias Removal in Surface Temperature Forecasts

All numerical weather prediction(NWP) models inherently have substantial biases, especially in the forecast of near-surface weather variables. Statistical methods can be used to remove the systematic error based on historical bias data at observation stations. However, many end users of weather fore...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of Meteorological Research 2017-08, Vol.31 (4), p.791-799
Hauptverfasser: Mohammadi, Seyedeh Atefeh, Azadi, Majid, Rahmani, Morteza
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:All numerical weather prediction(NWP) models inherently have substantial biases, especially in the forecast of near-surface weather variables. Statistical methods can be used to remove the systematic error based on historical bias data at observation stations. However, many end users of weather forecasts need bias corrected forecasts at locations that scarcely have any historical bias data. To circumvent this limitation, the bias of surface temperature forecasts on a regular grid covering Iran is removed, by using the information available at observation stations in the vicinity of any given grid point. To this end, the running mean error method is first used to correct the forecasts at observation stations, then four interpolation methods including inverse distance squared weighting with constant lapse rate(IDSW-CLR), Kriging with constant lapse rate(Kriging-CLR), gradient inverse distance squared with linear lapse rate(GIDS-LR), and gradient inverse distance squared with lapse rate determined by classification and regression tree(GIDS-CART), are employed to interpolate the bias corrected forecasts at neighboring observation stations to any given location. The results show that all four interpolation methods used do reduce the model error significantly,but Kriging-CLR has better performance than the other methods. For Kriging-CLR, root mean square error(RMSE)and mean absolute error(MAE) were decreased by 26% and 29%, respectively, as compared to the raw forecasts. It is found also, that after applying any of the proposed methods, unlike the raw forecasts, the bias corrected forecasts do not show spatial or temporal dependency.
ISSN:2095-6037
2198-0934
DOI:10.1007/s13351-017-6135-1