Sparse Representation for Face Recognition Based on Constraint Sampling and Face Alignment

Sparse Representation based Classification (SRC) has emerged as a new paradigm for solving recognition problems. This paper presents a constraint sampling feature extraction method that improves the SRC recognition rate. The method combines texture and shape features to significantly improve the rec...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Tsinghua science and technology 2013-02, Vol.18 (1), p.62-67
Hauptverfasser: Wang, Jing, Su, Guangda, Xiong, Ying, Chen, Jiansheng, Shang, Yan, Liu, Jiongxin, Ren, Xiaolong
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Sparse Representation based Classification (SRC) has emerged as a new paradigm for solving recognition problems. This paper presents a constraint sampling feature extraction method that improves the SRC recognition rate. The method combines texture and shape features to significantly improve the recognition rate. Tests show that the combined constraint sampling and facial alignment achieves very high recognition accuracy on both the AR face database (99.52%) and the CAS-PEAL face database (99.54%).
ISSN:1007-0214
1878-7606
1007-0214
DOI:10.1109/TST.2013.6449409