Robust Sensor Bias Estimation for Ill-Conditioned Scenarios
Sensor bias estimation is an inherent problem in multi-sensor data fusion systems. Classical methods such as the Generalized Least Squares (GLS) method can have numerical problems with ill-conditioned sets which are common in practical applications. This paper describes an azimuth-GLS method that pr...
Gespeichert in:
Veröffentlicht in: | Tsinghua science and technology 2012-06, Vol.17 (3), p.319-323 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Sensor bias estimation is an inherent problem in multi-sensor data fusion systems. Classical methods such as the Generalized Least Squares (GLS) method can have numerical problems with ill-conditioned sets which are common in practical applications. This paper describes an azimuth-GLS method that provides a solution to the ill-conditioning problem while maintaining reasonable accuracy com- pared with the classical GLS method. The mean square error is given for both methods as a criterion to de- termine when to use this azimuth-GLS method. Furthermore, the separation boundary between the azi- muth-GLS favorable region and that of the GLS method is explicitly plotted. Extensive simulations show that the azimuth-GLS approach is preferable in most scenarios. |
---|---|
ISSN: | 1007-0214 1878-7606 1007-0214 |
DOI: | 10.1109/TST.2012.6216763 |