Markov clustering-based placement algorithm for hierarchical FPGAs

Divide-and-conquer methods for FPGA placement algorithms including partition-based and cluster-based algorithms have shown the importance of good quality-runtime trade-off. This paper describes a cluster-based FPGA placement algorithm targeted to a new commercial hierarchical FPGA device. The algori...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Tsinghua science and technology 2011-02, Vol.16 (1), p.62-68
Hauptverfasser: Dai, Hui, Zhou, Qiang, Bian, Jinian
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Divide-and-conquer methods for FPGA placement algorithms including partition-based and cluster-based algorithms have shown the importance of good quality-runtime trade-off. This paper describes a cluster-based FPGA placement algorithm targeted to a new commercial hierarchical FPGA device. The algorithm is based on a Markov clustering algorithm that defines a sequence of stochastic matrices operating on a generating matrix from the input FPGA circuit netlist. The core of the algorithm tightly couples a Markov clustering process with a multilevel placement process. Tests show its excellent adaptability to hierarchical FPGAs. The average wirelength results produced by the algorithm are 22.3% shorter than the results produced by the current hierarchical FPGA placer.
ISSN:1007-0214
1007-0214
DOI:10.1016/S1007-0214(11)70010-4