Advances in SVM-Based System Using GMM Super Vectors for Text-Independent Speaker Verification

For text-independent speaker verification, the Gaussian mixture model (GMM) using a universal background model strategy and the GMM using support vector machines are the two most commonly used methodologies. Recently, a new SVM-based speaker verification method using GMM super vectors has been propo...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Tsinghua science and technology 2008-08, Vol.13 (4), p.522-527
Hauptverfasser: Zhao, Jian, Dong, Yuan, Zhao, Xianyu, Yang, Hao, Lu, Liang, Wang, Haila
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:For text-independent speaker verification, the Gaussian mixture model (GMM) using a universal background model strategy and the GMM using support vector machines are the two most commonly used methodologies. Recently, a new SVM-based speaker verification method using GMM super vectors has been proposed. This paper describes the construction of a new speaker verification system and investigates the use of nuisance attribute projection and test normalization to further enhance performance. Experiments were conducted on the core test of the 2006 NIST speaker recognition evaluation corpus. The experimental results indicate that an SVM-based speaker verification system using GMM super vectors can achieve appealing performance. With the use of nuisance attribute projection and test normalization, the system performance can be significantly improved, with improvements in the equal error rate from 7.78% to 4.92% and detection cost function from 0.0376 to 0.0251.
ISSN:1007-0214
1878-7606
1007-0214
DOI:10.1016/S1007-0214(08)70083-X