Seismic Acquisition Parameters Analysis for Deep Weak Reflectors in the South Yellow Sea
The Mesozoic-Paleozoic marine residual basin in the South Yellow Sea(SYS) is a significant deep potential hydrocarbon reservoir. However, the imaging of the deep prospecting target is quite challenging due to the specific seismic-geological conditions. In the Central and Wunansha Uplifts, the penetr...
Gespeichert in:
Veröffentlicht in: | Journal of Ocean University of China 2016-10, Vol.15 (5), p.758-766 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The Mesozoic-Paleozoic marine residual basin in the South Yellow Sea(SYS) is a significant deep potential hydrocarbon reservoir. However, the imaging of the deep prospecting target is quite challenging due to the specific seismic-geological conditions. In the Central and Wunansha Uplifts, the penetration of the seismic wavefield is limited by the shallow high-velocity layers(HVLs) and the weak reflections in the deep carbonate rocks. With the conventional marine seismic acquisition technique, the deep weak reflection is difficult to image and identify. In this paper, we could confirm through numerical simulation that the combination of multi-level air-gun array and extended cable used in the seismic acquisition is crucial for improving the imaging quality. Based on the velocity model derived from the geological interpretation, we performed two-dimensional finite difference forward modeling. The numerical simulation results show that the use of the multi-level air-gun array can enhance low-frequency energy and that the wide-angle reflection received at far offsets of the extended cable has a higher signal-to-noise ratio(SNR) and higher energy. Therefore, we have demonstrated that the unconventional wide-angle seismic acquisition technique mentioned above could overcome the difficulty in imaging the deep weak reflectors of the SYS, and it may be useful for the design of practical seismic acquisition schemes in this region. |
---|---|
ISSN: | 1672-5182 1993-5021 1672-5174 |
DOI: | 10.1007/s11802-016-2978-9 |