Seasonal Suspended Particles Distribution Patterns in Western South Yellow Sea Based on Acoustic Doppler Current Profiler Observation

An Acoustic Doppler Current Profiler (ADCP) observation site was set up in the Western South Yellow Sea from 2012 to 2013 to study the local suspended particle matters (SPM) distribution pattern. The SPM concentration could be semi-quantitatively represented by backscatter intensity (Sv), converted...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of Ocean University of China 2015-06, Vol.14 (3), p.385-398
Hauptverfasser: Li, Jianchao, Li, Guangxue, Xu, Jishang, Qiao, Lulu, Dong, Ping, Ding, Dong, Liu, Shidong, Sun, Pingkuo
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:An Acoustic Doppler Current Profiler (ADCP) observation site was set up in the Western South Yellow Sea from 2012 to 2013 to study the local suspended particle matters (SPM) distribution pattern. The SPM concentration could be semi-quantitatively represented by backscatter intensity (Sv), converted by the echo intensity (E/) of ADCP. Results show two types of SPM in the water column: the quasi-biological SPM and quasi-mineral SPM. The quasi-biological SPM mainly exists in summer half year and is con- centrated above the thermocline. It has periodically diurnal variations with high concentration at night and low concentration in the daytime. The quasi-mineral SPM is located in lower part of the water column, with similar relation to monthly tidal current variation all year round. However, the daily quasi-mineral SPM distribution patterns vary between summer and winter half year. The sunlight is thought to be the origin factor leading to the diurnally vertical motion of the biological features, which might cause the diurnal Sv variation. Unlike in winter half year when tidal current is relatively single driving force of the monthly SPM pattern, the high speed current near the thermocline is also responsible for the concentration of quasi-mineral SPM in summer half year. The sediment input difference between summer and winter half year contribute to the varied daily variation of quasi-mineral SPM with re-suspended SPM ir~ winter and sediments from Yellow Sea Mud Area (YSMA) in summer. The seasonal variations in hydrodynamics, water structure and heavy-wind incidents are the primary factors influencing the differential seasonal SPM distribution patterns.
ISSN:1672-5182
1993-5021
1672-5174
DOI:10.1007/s11802-015-2762-2