A Homogeneous Linear Estimation Method for System Error in Data Assimilation

In this paper, a new bias estimation method is proposed and applied in a regional ensemble Kalman filter (EnKF) based on the Weather Research and Forecasting (WRF) Model. The method is based on a homogeneous linear bias model, and the model bias is estimated using statistics at each assimilation cyc...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of Ocean University of China 2013-09, Vol.12 (3), p.335-344
Hauptverfasser: Wu, Wei, Wu, Zengmao, Gao, Shanhong, Zheng, Yi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper, a new bias estimation method is proposed and applied in a regional ensemble Kalman filter (EnKF) based on the Weather Research and Forecasting (WRF) Model. The method is based on a homogeneous linear bias model, and the model bias is estimated using statistics at each assimilation cycle, which is different from the state augmentation methods proposed in pre- vious literatures. The new method provides a good estimation for the model bias of some specific variables, such as sea level pres- sure (SLP). A series of numerical experiments with EnKF are performed to examine the new method under a severe weather condi- tion. Results show the positive effect of the method on the forecasting of circulation pattern and meso-scale systems, and the reduc- tion of analysis errors. The background error covarianee structures of surface variables and the effects of model system bias on EnKF are also studied under the error covariance structures and a new concept 'correlation scale' is introduced. However, the new method needs further evaluation with more cases of assimilation.
ISSN:1672-5182
1993-5021
1672-5174
DOI:10.1007/s11802-013-1918-1