基于均生函数-最优子集回归模型的短期电力负荷预测方法

为进一步提高电力负荷预测的精度和运算速度,针对短期负荷预测样本数据既有趋势性又有波动性的特点,采用均生函数-最优子集回归(mean generating function-optimal subset regression,MGF-OSR)建立预测模型。相对于均生函数主成分回归(mean generating function-principal component analysis,MGF-PCA)模型,该方法引入了一阶、二阶差分序列对高频部分进行拟合,又建立累加生成序列拟合其趋势,通过均值生成函数(MGF)将上述所有序列构建出预测因子矩阵,采用双评分准则进行粗选,剔除评分较低的因子,其他预...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:农业工程学报 2013, Vol.29 (14), p.178-184
1. Verfasser: 窦震海 杨仁刚 焦娇
Format: Artikel
Sprache:chi
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:为进一步提高电力负荷预测的精度和运算速度,针对短期负荷预测样本数据既有趋势性又有波动性的特点,采用均生函数-最优子集回归(mean generating function-optimal subset regression,MGF-OSR)建立预测模型。相对于均生函数主成分回归(mean generating function-principal component analysis,MGF-PCA)模型,该方法引入了一阶、二阶差分序列对高频部分进行拟合,又建立累加生成序列拟合其趋势,通过均值生成函数(MGF)将上述所有序列构建出预测因子矩阵,采用双评分准则进行粗选,剔除评分较低的因子,其他预报因子经组合寻优后得到最优子集并以此建立预测模型。实例分析表明,该模型预测的平均相对误差可低至2.42%,明显优于主成分回归模型的预测精度。
ISSN:1002-6819
DOI:10.3969/j.issn.1002-6819.2013.14.023