基于K-means聚类的植物叶片图像叶脉提取
植物的叶片是植物最基本、最主要的生命活动场所。叶脉的提取与分析对叶片和整株植物结构的分析有一定的应用价值。该文提出一种基于K-means聚类(clustering)的叶脉提取算法。该算法首先对叶片图像的HSI彩色空间中的I信息进行K-means聚类处理,根据聚类的结果提取叶片边界,并将叶片图像分为受光均匀和受光不均匀的2类。对于受光均匀的叶片图像在聚类结果中直接提取叶脉,而受光不均匀的叶片图像则需去除部分叶肉后再进行一次K-means聚类提取叶脉。结果表明:该算法能有效地降低叶脉提取的错分率。...
Gespeichert in:
Veröffentlicht in: | 农业工程学报 2012, Vol.28 (17), p.157-162 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | chi |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | 植物的叶片是植物最基本、最主要的生命活动场所。叶脉的提取与分析对叶片和整株植物结构的分析有一定的应用价值。该文提出一种基于K-means聚类(clustering)的叶脉提取算法。该算法首先对叶片图像的HSI彩色空间中的I信息进行K-means聚类处理,根据聚类的结果提取叶片边界,并将叶片图像分为受光均匀和受光不均匀的2类。对于受光均匀的叶片图像在聚类结果中直接提取叶脉,而受光不均匀的叶片图像则需去除部分叶肉后再进行一次K-means聚类提取叶脉。结果表明:该算法能有效地降低叶脉提取的错分率。 |
---|---|
ISSN: | 1002-6819 |
DOI: | 10.3969/j.issn.1002-6819.2012.17.023 |