基于机器视觉的马铃薯质量和形状分选方法

马铃薯的质量和形状是机器视觉分级的2个重要特征和依据,为实现马铃薯质量与形状检测分级,该文提出了一种基于图像综合特征参数的分选方法。首先提取马铃薯俯视图的面积参数和侧视图的周长参数,通过回归分析建立马铃薯的质量检测模型,实现对马铃薯的质量分选;然后提取马铃薯俯视图像的6个不变矩参数,输入到已训练好的神经网络,完成对马铃薯形状分选。试验结果表明:该方法可以有效的检测马铃薯的质量并区分其形状,质量分选准确率为95.3%,薯形分选准确率为96%。可满足实际应用的要求。...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:农业工程学报 2012, Vol.28 (17), p.143-148
1. Verfasser: 孔彦龙 高晓阳 李红玲 张明艳 杨占峰 毛红玉 杨倩
Format: Artikel
Sprache:chi
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:马铃薯的质量和形状是机器视觉分级的2个重要特征和依据,为实现马铃薯质量与形状检测分级,该文提出了一种基于图像综合特征参数的分选方法。首先提取马铃薯俯视图的面积参数和侧视图的周长参数,通过回归分析建立马铃薯的质量检测模型,实现对马铃薯的质量分选;然后提取马铃薯俯视图像的6个不变矩参数,输入到已训练好的神经网络,完成对马铃薯形状分选。试验结果表明:该方法可以有效的检测马铃薯的质量并区分其形状,质量分选准确率为95.3%,薯形分选准确率为96%。可满足实际应用的要求。
ISSN:1002-6819
DOI:10.3969/j.issn.1002-6819.2012.17.021