基于EMD和MLEM2的滚动轴承智能故障诊断方法

针对旋转机械的自主故障诊断,提出一种基于EMD和MLEM2的智能解决方法。利用EMD预处理振动信号,在最适合的IMF分量上提取6个时域指标和5个频域指标构成无量纲的轴承故障特征向量。根据设备运行数据形成决策表,使用改进的MLEM2算法挖掘诊断规则,再结合改进的规则匹配策略进行状态识别。EMD能够剥离故障最本质的信息,提高所选分量的信噪比,而MLEM2算法无需对连续属性事先离散化,获得的诊断规则更完备、准确。SKF6203轴承试验表明,该方法诊断精度达到93.75%,相当于能够自主获取知识的专家系统,且只要一次初始设定,无需后续人工干预,是一种有效的智能诊断方法。...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:农业工程学报 2011, Vol.27 (4), p.125-130
1. Verfasser: 窦东阳 杨建国 李丽娟 赵英凯
Format: Artikel
Sprache:chi
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:针对旋转机械的自主故障诊断,提出一种基于EMD和MLEM2的智能解决方法。利用EMD预处理振动信号,在最适合的IMF分量上提取6个时域指标和5个频域指标构成无量纲的轴承故障特征向量。根据设备运行数据形成决策表,使用改进的MLEM2算法挖掘诊断规则,再结合改进的规则匹配策略进行状态识别。EMD能够剥离故障最本质的信息,提高所选分量的信噪比,而MLEM2算法无需对连续属性事先离散化,获得的诊断规则更完备、准确。SKF6203轴承试验表明,该方法诊断精度达到93.75%,相当于能够自主获取知识的专家系统,且只要一次初始设定,无需后续人工干预,是一种有效的智能诊断方法。
ISSN:1002-6819
DOI:10.3969/j.issn.1002-6819.2011.04.021