基于支持向量回归(SVR)和多时相遥感数据的冬小麦估产

TP79%S127; 发展和构建高精度的作物遥感估产模型,对于国家制订粮食进出口政策和保障粮食安全具有重要意义.尝试利用支持向量回归方法(SVR)构建遥感估产模型,首先利用北京郊区2004年和2007年冬小麦主要生育期多时相Landsat TM影像生成的归一化植被指数,通过SVR构建遥感估产模型进行产量估算.然后针对模型的稳健型和预报能力进行交叉验证,并与常规的多元回归方法进行对比.结果表明,利用SVR方法构建的遥感估算模型有效地提高了估算精度,与多元回归方法相比,2004年和2007年决定系数分别提高0.2162、0.2158,均方根误差分别降低0.1682、0.2912.因此基于SVR和多...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:农业工程学报 2009, Vol.25 (7), p.114-117
Hauptverfasser: 黎锐, 李存军, 徐新刚, 王纪华, 杨小冬, 黄文江, 潘瑜春
Format: Artikel
Sprache:chi
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:TP79%S127; 发展和构建高精度的作物遥感估产模型,对于国家制订粮食进出口政策和保障粮食安全具有重要意义.尝试利用支持向量回归方法(SVR)构建遥感估产模型,首先利用北京郊区2004年和2007年冬小麦主要生育期多时相Landsat TM影像生成的归一化植被指数,通过SVR构建遥感估产模型进行产量估算.然后针对模型的稳健型和预报能力进行交叉验证,并与常规的多元回归方法进行对比.结果表明,利用SVR方法构建的遥感估算模型有效地提高了估算精度,与多元回归方法相比,2004年和2007年决定系数分别提高0.2162、0.2158,均方根误差分别降低0.1682、0.2912.因此基于SVR和多时相遥感数据构建估产模型用于冬小麦估产是可行、有效的,为应用多时相遥感数据进行冬小麦估产提供了一种方法.
ISSN:1002-6819
DOI:10.3969/j.issn.1002-6819.2009.07.021