基于改进CenterNet算法的风机叶片损伤检测识别技术
TM315; 为了对风力发电机组叶片损伤状态进行有效检测,提出一种基于CenterNet目标检测算法的风机叶片损伤检测识别技术.该技术选取DLA-60特征提取网络作为CenterNet算法的骨干网络,并在DLA-60网络中引入注意力引导数据增强机制,提升检测算法的精度.优化后风力机叶片损伤检测识别模型的检测精度为88%,较原始算法提升了2.6个百分点,且检测时间基本与原网络持平,具有较强的精确性和实用性....
Gespeichert in:
Veröffentlicht in: | 内蒙古电力技术 2022, Vol.40 (1), p.10-14 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | chi |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | TM315; 为了对风力发电机组叶片损伤状态进行有效检测,提出一种基于CenterNet目标检测算法的风机叶片损伤检测识别技术.该技术选取DLA-60特征提取网络作为CenterNet算法的骨干网络,并在DLA-60网络中引入注意力引导数据增强机制,提升检测算法的精度.优化后风力机叶片损伤检测识别模型的检测精度为88%,较原始算法提升了2.6个百分点,且检测时间基本与原网络持平,具有较强的精确性和实用性. |
---|---|
ISSN: | 1008-6218 |
DOI: | 10.19929/j.cnki.nmgdljs.2022.0003 |