LONG-TERM RIGOROUS NUMERICAL INTEGRATION OF NAVIER-STOKES EQUATION BY NEWTON-GMRES ITERATION

The recent result of an orbit continuation algorithm has provided a rigorous method for long-term numer- ical integration of an orbit on the unstable manifold of a periodic solution. This algorithm is matrix-free and em- ploys a combination of the Newton-Raphson method and the Krylov subspace method...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Transactions of Nanjing University of Aeronautics & Astronautics 2013-09, Vol.30 (3), p.248-251
Hauptverfasser: Lustro, Julius Rhoan T, Van Veen, Lennaert, Kavuahara, Genta
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The recent result of an orbit continuation algorithm has provided a rigorous method for long-term numer- ical integration of an orbit on the unstable manifold of a periodic solution. This algorithm is matrix-free and em- ploys a combination of the Newton-Raphson method and the Krylov subspace method. Moreover, the algorithm adopts a multiple shooting method to address the problem of orbital instability due to long-term numerical integra- tion. The algorithm is described through computing the extension of unstable manifold of a recomputed Nagata~s lower-branch steady solution of plane Couette flow, which is an example of an exact coherent state that has recently been studied in subcritical transition to turbulence.
ISSN:1005-1120