一种用于情感分析的LSTM-CNN深度网络模型
TP312; 针对传统文本特征表示维度大且不能考虑上下文语义信息、循环神经网络梯度消失或梯度爆炸等问题,提出了一种结合LSTM和CNN的深度学习模型,文本数据经过清洗、词嵌入以及标准化后,将其输入至该模型中进行学习.考虑到词与词之间的相关性,使用了word2vec词向量工具,将LSTM和CNN通过恰当的方式结合,经实验验证,该模型的准确率和稳定性得到了有效提高....
Gespeichert in:
Veröffentlicht in: | 广东石油化工学院学报 2019, Vol.29 (6), p.53-62 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | chi |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | TP312; 针对传统文本特征表示维度大且不能考虑上下文语义信息、循环神经网络梯度消失或梯度爆炸等问题,提出了一种结合LSTM和CNN的深度学习模型,文本数据经过清洗、词嵌入以及标准化后,将其输入至该模型中进行学习.考虑到词与词之间的相关性,使用了word2vec词向量工具,将LSTM和CNN通过恰当的方式结合,经实验验证,该模型的准确率和稳定性得到了有效提高. |
---|---|
ISSN: | 2095-2562 |
DOI: | 10.3969/j.issn.2095-2562.2019.06.012 |