Feature extraction of wood-hole defects using wavelet-based ultrasonic testing

The primary bottleneck to extracting wood defects during ultrasonic testing is the accuracy of identifying the wood defects. The wavelet energy moment was used to extract defect features of artificial wood holes drilled into 120 elm samples that differed in the number of holes to verify the validity...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of forestry research 2017-03, Vol.28 (2), p.395-402
Hauptverfasser: Yang, Huiming, Yu, Lei
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The primary bottleneck to extracting wood defects during ultrasonic testing is the accuracy of identifying the wood defects. The wavelet energy moment was used to extract defect features of artificial wood holes drilled into 120 elm samples that differed in the number of holes to verify the validity of the method. Wavelet energy moment can reflect the distribution of energy along the time axis and the amount of energy in each frequency band,which can effectively extract the energy distribution characteristics of signals in each frequency band; therefore,wavelet energy moment can replace the wavelet frequency band energy and constitute wood defect feature vectors. A principal component analysis was used to normalize and reduce the dimension of the feature vectors. A total of 16 principal component features were then obtained, which can effectively extract the defect features of the different number of holes in the elm samples.
ISSN:1007-662X
1993-0607
DOI:10.1007/s11676-016-0297-z