A method to access the electro-mechanical properties of superconducting thin film under uniaxial compression
Superconducting thin films are widely used in superconducting quantum interferometers, microwave devices, etc. The electrical performance of a superconducting thin film is often affected by structural deformation or stress. Based on four-point bending of a Cu-Be beam, we constructed a device that co...
Gespeichert in:
Veröffentlicht in: | Acta mechanica Sinica 2020-10, Vol.36 (5), p.1046-1050 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Superconducting thin films are widely used in superconducting quantum interferometers, microwave devices, etc. The electrical performance of a superconducting thin film is often affected by structural deformation or stress. Based on four-point bending of a Cu-Be beam, we constructed a device that could apply uniaxial, uniform, compressive strain to a superconducting thin film at both room temperature and the temperature of liquid nitrogen. The thin film was placed into a slot carved in the Cu-Be beam. We optimized the size of this slot via numerical simulation. Our results indicated that the slot width was optimal when it was same as the width of the Cu-Be beam. Notably, the sample bended hardly after machining two slits along width direction on both sides of the slot. A YBa
2
Cu
3
O
7-δ
-SrTiO
3
(YBCO-STO) film was used as an example. It was loaded by the aforementioned device to determine its electrical characteristics as functions of the uniaxial-uniform-compressive strain. The optimized design allowed the sample to be compressed to a larger strain without breaking it.
Graphic Abstract |
---|---|
ISSN: | 0567-7718 1614-3116 |
DOI: | 10.1007/s10409-020-00986-9 |