可压Navier-Stokes-Korteweg方程组强稀疏波的稳定性
研究了一维可压Korteweg型流体模型强稀疏波的渐近稳定性问题。假设相应的可压Euler方程的黎曼问题存在稀疏波解( VR ,UR ,SR )( t,x),如果Navier-Stokes-Korteweg系统的初值是近似稀疏波的小扰动,利用能量方法,可以证明其柯西问题存在一个唯一的整体光滑解,并随着时间渐近趋于( VR ,UR , SR )( t,x)。...
Gespeichert in:
Veröffentlicht in: | 厦门理工学院学报 2014, Vol.22 (5), p.93-97 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | chi |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | 研究了一维可压Korteweg型流体模型强稀疏波的渐近稳定性问题。假设相应的可压Euler方程的黎曼问题存在稀疏波解( VR ,UR ,SR )( t,x),如果Navier-Stokes-Korteweg系统的初值是近似稀疏波的小扰动,利用能量方法,可以证明其柯西问题存在一个唯一的整体光滑解,并随着时间渐近趋于( VR ,UR , SR )( t,x)。 |
---|---|
ISSN: | 1673-4432 |