A neuro-observer-based optimal control for nonaffine nonlinear systems with control input saturations

In this study, an adaptive neuro-observer-based optimal control (ANOPC) policy is introduced for unknown nonaffine nonlinear systems with control input constraints. Hamilton–Jacobi–Bellman (HJB) framework is employed to minimize a non-quadratic cost function corresponding to the constrained control...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Control theory and technology 2021-05, Vol.19 (2), p.283-294
Hauptverfasser: Farzanegan, Behzad, Zamani, Mohsen, Suratgar, Amir Abolfazl, Menhaj, Mohammad Bagher
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this study, an adaptive neuro-observer-based optimal control (ANOPC) policy is introduced for unknown nonaffine nonlinear systems with control input constraints. Hamilton–Jacobi–Bellman (HJB) framework is employed to minimize a non-quadratic cost function corresponding to the constrained control input. ANOPC consists of both analytical and algebraic parts. In the analytical part, first, an observer-based neural network (NN) approximates uncertain system dynamics, and then another NN structure solves the HJB equation. In the algebraic part, the optimal control input that does not exceed the saturation bounds is generated. The weights of two NNs associated with observer and controller are simultaneously updated in an online manner. The ultimately uniformly boundedness (UUB) of all signals of the whole closed-loop system is ensured through Lyapunov’s direct method. Finally, two numerical examples are provided to confirm the effectiveness of the proposed control strategy.
ISSN:2095-6983
2198-0942
DOI:10.1007/s11768-021-00045-z